Chemical Science
Edge Article
not sufficient chiral differentiation between the two isomeric
forms by kinetic resolution at the chiral ruthenium centre.
K. P. Bryliakov and E. P. Talsi, Coord. Chem. Rev., 2014,
276, 73; (l) W. N. Oloo and L. Que Jr, Acc. Chem. Res., 2015,
´
48, 2612; (m) O. Cusso, X. Ribas and M. Costas, Chem.
Commun., 2015, 51, 14285; (n) G. B. Shul'pin, Catalysts,
Conclusions
´
2016, 6, 50; (o) G. Olivo, O. Cusso and M. Costas, Chem.–
In this work, we reported the preparation and electrochemistry
of several ruthenium complexes bearing tetradentate N4 ligands
including cis-[(mcp)RuIII(O2CCF3)2]ClO4 (1b) and cis-[(pdp)
RuIII(O3SCF3)2]CF3SO3 (3c0). Complex cis-[(mcp)RuVI(O)2](ClO4)2
(1e) was obtained from CAN oxidation of 1b in aqueous solu-
tion. Complex 1e is a powerful oxidant with E(RuVI/V) ¼ 0.78 V
(vs. Ag/AgNO3) in acetonitrile or Eꢀ ¼ 1.11 V (vs. SCE) at pH 1. In
aqueous tert-butanol, [((R,R)-mcp)RuVI(O)2](ClO4)2 (1e*) under-
went stoichiometric alkene cis-dihydroxylation to afford cis-diol
in 24% ee for trans-b-methylstyrene oxidation. With high
hydrogen-atom affinities (DO–H ¼ 90.1–90.8 kcal molꢁ1), 1e and
chemically generated cis-[(pdp)RuVI(O)2]2+ are active oxidants
for C–H oxidation. cis-[(pdp)RuII(OH2)2]2+ (3c), in combination
with CAN as a terminal oxidant, catalysed the oxidation of
unactivated C–H bonds including those of some pharmaceu-
tical ingredients and natural product derivatives. This work
demonstrates that efficient oxidation catalysts can be con-
structed based on the cis-dioxoruthenium(VI) moiety on a N4
ligand platform. The diversity and exibility of chiral N4 ligand
design will direct subsequent efforts to improve the reaction
selectivities.4d Further studies are also directed to gain a better
understanding of the reaction mechanism in hydrocarbon
oxidations and to explore other catalytic activities of chiral
Ru(N4) complexes.
Asian J., 2016, 11, 3148; (p) J. A. Labinger, Chem. Rev., 2017,
117, 8483; (q) J. He, M. Wasa, K. S. L. Chan, O. Shao and
J.-Q. Yu, Chem. Rev., 2017, 117, 8754; (r) K. P. Bryliakov,
Chem. Rev., 2017, 117, 11406.
2 Selected reviews: (a) I. Arends, P. Gamez and R. A. Sheldon,
Adv. Inorg. Chem., 2006, 58, 235; (b) C. Parmeggiani and
F. Cardona, Green Chem., 2012, 14, 547; (c)
M. N. Kopylovich, A. P. C. Ribeiro, E. C. B. A. Alegria,
N. M. R. Martins, L. M. D. R. S. Martins and
A. J. L. Pombeiro, in Adv. Organomet. Chem., 2015, vol. 63,
p. 91; (d) C. Parmeggiani, C. Matassini and F. Cardona,
Green Chem., 2017, 19, 2030; (e) R. H. Crabtree, Chem. Rev.,
2017, 117, 9228.
3 Fe examples on C–H hydroxylation: (a) M. S. Chen and
M. C. White, Science, 2007, 318, 783; (b) L. Gomez,
I. Garcia-Bosch, A. Company, J. Benet-Buchholz, A. Polo,
X. Sala, X. Ribas and M. Costas, Angew. Chem., Int. Ed.,
2009, 48, 5720; (c) M. A. Bigi, S. A. Reed and M. C. White, J.
Am. Chem. Soc., 2012, 134, 9721; (d) P. E. Gormisky and
M. C. White, J. Am. Chem. Soc., 2013, 135, 14052; (e)
J. M. Howell, K. Feng, J. R. Clark, L. J. Trzepkowski and
M. C. White, J. Am. Chem. Soc., 2015, 137, 14590; (f)
´
D. Font, M. Canta, M. Milan, O. Cusso, X. Ribas,
R. J. M. Klein Gebbink and M. Costas, Angew. Chem., Int.
Ed., 2016, 55, 5776.
4 Mn examples on C–H functionalization: (a) K. Nehru,
S. J. Kim, I. Y. Kim, M. S. Seo, Y. Kim, S.-J. Kim, J. Kim and
Conflicts of interest
There are no conicts to declare.
W.
Nam,
Chem.
Commun.,
2007,
4623;
(b)
R. V. Ottenbacher, D. G. Samsonenko, E. P. Talsi and
K. P. Bryliakov, Org. Lett., 2012, 14, 4310; (c) M. Milan,
G. Carboni, M. Salamone, M. Costas and M. Bietti, ACS
Catal., 2017, 7, 5903; (d) M. Milan, M. Bietti and M. Costas,
ACS Cent. Sci., 2017, 3, 196.
5 Fe examples on C]C functionalization: (a) M. Costas,
A. K. Tipton, K. Chen, D.-H. Jo and L. Que Jr, J. Am. Chem.
Soc., 2001, 123, 6722; (b) K. Suzuki, P. D. Oldenburg and
L. Que Jr, Angew. Chem., Int. Ed., 2008, 47, 1887; (c) M. Wu,
Acknowledgements
This work was supported by Hong Kong Research Grants
Council General Research Fund (17303815, 17301817) and Basic
Research Program-Shenzhen Fund (JCYJ20170412140251576,
JCYJ20150629151046879). We thank the X-Ray Crystallography
Laboratory in the Department of Chemistry at The University of
Hong Kong for instrumental support (Bruker D8 Venture).
¨
C.-X. Miao, S. Wang, X. Hu, C. Xia, F. E. Kuhn and W. Sun,
Adv. Synth. Catal., 2011, 353, 3014; (d) O. Y. Lyakin,
R. V. Ottenbacher, K. P. Bryliakov and E. P. Talsi, ACS
Notes and references
´
1 Selected reviews: (a) J. A. Labinger and J. E. Bercaw, Nature,
2002, 417, 507; (b) L. Que Jr and W. B. Tolman, Nature,
2008, 455, 333; (c) S. I. Murahashi and D. Zhang, Chem.
Soc. Rev., 2008, 37, 1490; (d) M. Zhou and R. H. Crabtree,
Chem. Soc. Rev., 2011, 40, 1875; (e) C.-M. Che, V. K.-Y. Lo,
C.-Y. Zhou and J.-S. Huang, Chem. Soc. Rev., 2011, 40, 1950;
(f) M. Costas, Coord. Chem. Rev., 2011, 255, 2912; (g)
A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem.,
Int. Ed., 2011, 50, 11062; (h) M. C. White, Science, 2012,
335, 807; (i) E. P. Talsi and K. P. Bryliakov, Coord. Chem.
Rev., 2012, 256, 1418; (j) H. Srour, P. Le Maux, S. Chevance
and G. Simonneaux, Coord. Chem. Rev., 2013, 257, 3030; (k)
Catal., 2012, 2, 1196; (e) O. Cusso, I. Garcia-Bosch,
X. Ribas, J. Lloret-Fillol and M. Costas, J. Am. Chem. Soc.,
2013, 135, 14871; (f) O. Cusso, X. Ribas, J. Lloret-Fillol and
´
M. Costas, Angew. Chem., Int. Ed., 2015, 54, 2729; (g)
C. Zang, Y. Liu, Z.-J. Xu, C.-W. Tse, X. Guan, J. Wei,
J.-S. Huang and C.-M. Che, Angew. Chem., Int. Ed., 2016, 55,
10253; (h) M. Borrell and M. Costas, J. Am. Chem. Soc.,
2017, 139, 12821.
6 Mn examples on C]C functionalization: (a) A. Murphy,
G. Dubois and T. D. P. Stack, J. Am. Chem. Soc., 2003, 125,
5250; (b) T. W.-S. Chow, Y. Liu and C.-M. Che, Chem.
´
Commun., 2011, 47, 11204; (c) O. Cusso, I. Garcia-Bosch,
Chem. Sci.
This journal is © The Royal Society of Chemistry 2018