Inorganic Chemistry
Article
Ahicart, M.; Soriano-Lop
Mascaros, J. R. Polyoxometalate electrocatalysts based on earth-
abundant metals for efficient water oxidation in acid media. Nat. Chem.
́
ez, J.; Carbo,
́
J. J.; Poblet, J. M.; Galan-
Energy 2017, 34, 205−214. (b) Sun, C. Y.; Liu, S. X.; Liang, D. D.;
Shao, K. Z.; Ren, Y. H.; Su, Z. M. Highly stable crystalline catalysts
based on a microporous metal-organic framework and polyoxometa-
lates. J. Am. Chem. Soc. 2009, 131, 1883−1888. (c) Ma, F. J.; Liu, S. X.;
Sun, C. Y.; Liang, D. D.; Ren, G. J.; Wei, F.; Chen, Y. G.; Su, Z. M. A
sodalite-type porous metal-organic framework with polyoxometalate
templates: Adsorption and decomposition of dimethyl methylphosph-
onate. J. Am. Chem. Soc. 2011, 133, 4178−4181. (d) Hao, X. L.; Ma, Y.
Y.; Zang, H. Y.; Wang, Y. H.; Li, Y. G.; Wang, E. B. A polyoxometalate-
encapsulating cationic metal-organic framework as a heterogeneous
catalyst for desulfurization. Chem. - Eur. J. 2015, 21, 3778−3784.
(e) Song, J.; Luo, Z.; Britt, D. K.; Furukawa, H.; Yaghi, O. M.;
Hardcastle, K. I.; Hill, C. L. A multiunit catalyst with sunergistic
stability and reactivity: a polyoxometalate-metal organic framework for
aerobic decontamination. J. Am. Chem. Soc. 2011, 133, 16839−16846.
(11) (a) Fu, H.; Qin, C.; Lu, Y.; Zhang, Z. M.; Li, Y. G.; Su, Z. M.; Li,
W. L.; Wang, E. B. An ionothermal synthetic approach to porous
polyoxometalate-based metal-organic frameworks. Angew. Chem., Int.
Ed. 2012, 51, 7985−7989. (b) Liu, D.; Lu, Y.; Tan, H. Q.; Chen, W.
L.; Zhang, Z. M.; Li, Y. G.; Wang, E. B. Polyoxometalate-based purely
inorganic porous frameworks with selective adsorption and oxidative
catalysis functionalities. Chem. Commun. 2013, 49, 3673−3675.
(c) Yan, J.; Zhou, W. Z.; Tan, H. Q.; Feng, X. J.; Wang, Y. H.; Li,
Y. G. Ultrafine Ag/polyoxometalate-doped AgCl nanoparticles in
metal-organic framework as efficient photocatalysts under visible light.
CrystEngComm 2016, 18, 8762−8768. (d) Shi, D. Y.; He, C.; Qi, B.;
Chen, C.; Niu, J. Y.; Duan, C. Y. Merging of the photocatalysis and
copper catalysis in metal-organic frameworks for oxidative C-C bond
formation. Chem. Sci. 2015, 6, 1035−1042.
(12) (a) Han, Q. X.; Qi, B.; Ren, W. M.; He, C.; Niu, J. Y.; Duan, C.
Y. Polyoxometalate-based homochiral metal-organic frameworks for
tandem asymmetric transformation of cyclic carbonates from olefins.
Nat. Commun. 2015, 6, 10007. (b) Nohra, B.; El Moll, H.; Rodriguez
Albelo, L. M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’KeeFfe,
M.; Ngo Biboum, R.; Lemaire, J.; Keita, B.; Nadjo, L.; Dolbecq, A.
Polyoxometalate-based metal organic frameworks (POMOFs): Struc-
tural trends, energetics, and high electrocatalytic efficiency for
hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 13363−
13374. (c) Yang, X. J.; Sun, M.; Zang, H. Y.; Ma, Y. Y.; Feng, X. J.;
Tan, H. Q.; Wang, Y. H.; Li, Y. G. Hybrid coordination networks
constructed from ε-Keggin-type polyoxometalates and rigid imidazole-
based bridging ligands as new carriers for noble-metal catalysts. Chem.
- Asian J. 2016, 11, 858−867. (d) Zhang, F. M.; Jin, Y.; Shi, J.; Zhong,
Y. J.; Zhu, W. D.; El-Shall, M. S. Polyoxometalates confined in the
mesoporous cages of metal-organic framework MIL-100 (Fe):
Efficient heterogeneous catalysts for esterification and acetalization
reactions. Chem. Eng. J. 2015, 269, 236−244.
2
(
017, 10, 24−30.
3) Schultz, D. M.; Levesque, F.; Dirocco, D. A.; Reibarkh, M.; Ji, Y.
́
N.; Joyce, L. A.; Dropinski, J. F.; Sheng, H. M.; Sherry, B. D.; Davies, I.
W. Oxyfunctionalization of the remote C-H bonds of aliphatic amines
by decatungstate photocatalysis. Angew. Chem., Int. Ed. 2017, 56,
1
(
5274−15278.
4) (a) Buru, C. T.; Li, P.; Mehdi, B. L.; Dohnalkova, A.; Platero-
Prats, A. E.; Browning, N. D.; Chapman, K. W.; Hupp, J. T.; Farha, O.
K. Adsorption of a catalytically accessible polyoxometalate in a
mesoporous channel-type metal-organic framework. Chem. Mater.
2
017, 29, 5174−5181. (b) Du, J.; Cao, M. D.; Feng, S. L.; Su, F.; Sang,
X. J.; Zhang, L. C.; You, W. S.; Yang, M.; Zhu, Z. M. Two new
preyssler-type polyoxometalate-based coordination polymers and their
application in horseradish peroxidase immobilization. Chem. - Eur. J.
2
(
017, 23, 14614−14622.
5) (a) Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons
with hydrogen peroxide by vanadium-based polyoxometalates. Coord.
Chem. Rev. 2011, 255, 2358−2370. (b) Han, X. B.; Qin, C.; Wang, X.
L.; Tan, Y. Z.; Zhao, X. J.; Wang, E. B. Bio-inspired assembly of
cubane-adjustable polyoxometalate-based high-nuclear nickel clusters
for visible light-driven hydrogen evolution. Appl. Catal., B 2017, 211,
3
49−356. (c) Shi, H. F.; Yu, Y. C.; Zhang, Y.; Feng, X. J.; Zhao, X. Y.;
Tan, H. Q.; Khan, S. U.; Li, Y. G.; Wang, E. B. Polyoxometalate/TiO /
2
Ag composite nanofibers with enhanced photocatalytic performance
under visible light. Appl. Catal., B 2018, 221, 280−289. (d) He, W. L.;
Yang, X. L.; Zhao, M.; Wu, C. D. Suspending ionic single-atom
catalysts in porphyrinic frameworks for highly efficient aerobic
oxidation at room temperature. J. Catal. 2018, 358, 43−49.
(
6) (a) Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid
organic-inorganic polyoxometalate compounds: From structural
diversity to applications. Chem. Rev. 2010, 110, 6009−6048. (b) Du,
D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in
porous polyoxometalate-based metal-organic framework materials.
Chem. Soc. Rev. 2014, 43, 4615−4632.
(
7) (a) Miras, H. N.; Vila-
based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679−
699. (b) Wang, S. S.; Yang, G. Y. Recent advances in
polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893−
962.
8) (a) An, H. Y.; Wang, E. B.; Xiao, D. R.; Li, Y. G.; Su, Z. M.; Xu, L.
̀
Nadal, L.; Cronin, L. Polyoxometalate
5
4
(
Chiral 3D architectures with helical channels constructed from
polyoxometalate clusters and copper-amino acid complexes. Angew.
Chem. 2006, 118, 918−922. (b) Zheng, S. T.; Zhang, J.; Yang, G. Y.
Designed synthesis of POM-organic frameworks from {Ni PW }
6
9
building blocks under hydrothermal conditions. Angew. Chem., Int. Ed.
008, 47, 3909−3913. (c) Zheng, S. T.; Zhang, J.; Li, X. X.; Fang, W.;
(13) (a) Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L.
P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable
polymolybdate-based metal-organic frameworks as highly active
electrocatalysts for hydrogen generation from water. J. Am. Chem.
Soc. 2015, 137, 7169−7177. (b) Zhang, Z. M.; Zhang, T.; Wang, C.;
Lin, Z. K.; Long, L. S.; Lin, W. Photosensitizing metal-organic
framework enabling visible-light-driven proton reduction by a Wells-
Dawson-type polyoxometalate. J. Am. Chem. Soc. 2015, 137, 3197−
3200. (c) Kong, X. J.; Lin, Z. K.; Zhang, Z. M.; Zhang, T.; Lin, W. B.
Hierarchical integration of photosensitizing metal-organic frameworks
and nickel-containing polyoxometalates for efficient visible-light-driven
hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6411−6416.
(d) Boyd, T.; Mitchell, S. G.; Gabb, D.; Long, D. L.; Song, Y. F.;
Cronin, L. POMzites: A family of zeolitic polyoxometalate frameworks
from a minimal building block library. J. Am. Chem. Soc. 2017, 139,
5930−5938.
2
Yang, G. Y. Cubic polyoxometalate-organic molecular cage. J. Am.
Chem. Soc. 2010, 132, 15102−15103. (d) Kuang, X. F.; Wu, X. Y.; Yu,
R. M.; Donahue, J. P.; Huang, J. S.; Lu, C. Z. Assembly of a metal-
organic framework by sextuple intercatenation of discrete adamantane-
like cages. Nat. Chem. 2010, 2, 461−465.
(
9) (a) Jiao, Y. Q.; Zang, H. Y.; Wang, X. L.; Zhou, E. L.; Song, B. Q.;
Wang, C. G.; Shao, K. Z.; Su, Z. M. Self-assembled arrays of
polyoxometalate-based metal-organic nanotubes for proton conduc-
tion and magnetism. Chem. Commun. 2015, 51, 11313−11316. (b) Li,
X. X.; Wang, Y. X.; Wang, R. H.; Cui, C. Y.; Tian, C. B.; Yang, G. Y.
Designed assembly of heterometallic cluster organic frameworks based
on anderson-type polyoxometalate clusters. Angew. Chem., Int. Ed.
2
016, 55, 6462−6466. (c) Li, X. X.; Shen, F. C.; Liu, J.; Li, S. L.; Dong,
L. Z.; Fu, Q.; Su, Z. M.; Lan, Y. Q. A highly stable polyoxometalate-
based metal-organic framework with an ABW zeolite-like structure.
Chem. Commun. 2017, 53, 10054−10057.
(14) (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent advances
in transition metal catalyzed oxidation of organic substrates with
molecular oxygen. Chem. Rev. 2005, 105, 2329−2364. (b) Lee, D. G.;
Chen, T. In Comprehensive Organic Synthesis; Pergamon Press: Oxford,
U.K., 1991. (c) Larock, R. C. In Comprehensive Organic Trans-
formations; Wiley-VCH: New York, 1999.
(
10) (a) Wei, T.; Zhang, M.; Wu, P.; Tang, Y. J.; Li, S. L.; Shen, F. C.;
Wang, X. L.; Zhou, X. P.; Lan, Y. Q. POM-based metal-organic
framework/reduced graphene oxide nanocomposites with hybrid
behavior of battery-supercapacitor for superior lithium storage. Nano
G
Inorg. Chem. XXXX, XXX, XXX−XXX