K. R. Reddy, C. U. Maheswari, M. Venkateshwar, M. L. Kantam
SHORT COMMUNICATION
2876–2879; d) B. S. Jursic, Z. Zdravkovski, Synth. Commun.
1993, 23, 2761–2770.
a) Y. S. Lin, H. Alper, Angew. Chem. Int. Ed. 2001, 40, 779–
781; b) Y. Uozumi, T. Arii, T. Watanabe, J. Org. Chem. 2001,
66, 5272–5274; c) P. Namayakkara, H. Alper, Chem. Commun.
2003, 2384–2385.
product, which rules out the alternative mechanism of in
situ formation of carboxylic acids followed by a direct ther-
mal amide formation.
[4]
Conclusions
[5]
[6]
M. Beller, B. Cornils, C. D. Frohning, J. Mol. Catal. A 1995,
104, 17–18.
We have developed a simple and straightforward method
for the synthesis of the amide bond by oxidative coupling
between an aldehyde/alcohol and an amine. In this strategy,
no external base or additive is required. Moreover, the pres-
ent methodology was extended to chiral amino acid deriva-
tives, which are important intermediates in pharmaceuticals
and synthetic organic chemistry. Formation of amides from
alcohols, which is difficult to some extent, was also achieved
in this preliminary study. The scope of this reaction is under
investigation, and the results will be discussed in due course.
a) D. Knapton, T. Y. Meyer, Org. Lett. 2004, 6, 687–689; b) Y.
Uenoyama, T. Fukuyama, O. Nobuta, H. Matsubara, I. Ryu,
Angew. Chem. Int. Ed. 2005, 44, 1075–1078; c) S. Cho, E. Yoo,
I. Bae, S. Chang, J. Am. Chem. Soc. 2005, 127, 16046–16047;
d) M. P. Cassidy, J. Raushel, V. V. Fokin, Angew. Chem. Int.
Ed. 2006, 45, 3154–3157.
a) B. L. Nilson, L. L. Kiessling, R. T. Raines, Org. Lett. 2000,
2, 1939–1940; b) N. Shangguan, S. Katukojvala, R. Greenberg,
L. J. Williams, J. Am. Chem. Soc. 2003, 125, 7754–7755; c) R.
Merkx, A. J. Brouwer, D. T. S. Rijkers, R. M. J. Liskamp, Org.
Lett. 2005, 7, 1125–1128.
L. Yao, J. Aubé, J. Am. Chem. Soc. 2007, 129, 2766–2767.
E. Shaabani, E. Soleimani, A. H. Rezayan, Tetrahedron Lett.
2007, 48, 6137–6141.
C. H. Leung, A. M. Voutchkova, R. H. Crabtree, D. Balcells,
O. Eisenstein, Green Chem. 2007, 9, 976–979.
a) J. W. Bode, S. S. Sohn, J. Am. Chem. Soc. 2007, 129, 13798–
13799; b) H. U. Vora, T. Rovis, J. Am. Chem. Soc. 2007, 129,
13796–13797.
[7]
[8]
[9]
Experimental Section
[10]
[11]
General Procedure for the Synthesis of Amides from Amines: To a
solution of aldehyde (1.0 mmol), potassium iodide (0.05 mmol),
and amine (1.2 mmol) in water (3 mL) was added a solution of
70% aqueous TBHP (2.2 mmol) dropwise over a period of 30 min
and while stirring at 80 °C. Progress of the reaction was monitored
by TLC, and after completion of the reaction the mixture was
quenched with saturated aqueous Na2S2O3, washed with brine, ex-
tracted with ethyl acetate, and dried with anhydrous Na2SO4. Re-
moval of the solvent under vacuum afforded the crude product,
which was purified by column chromatography by using a hexane/
[12]
K. Nakagawa, H. Onoue, K. Minami, Chem. Commun. ( Lon-
don) 1966, 17–18.
[13]
[14]
Y. Tamaru, Y. Yamada, Z. Yoshida, Synthesis 1983, 474–476.
a) T. Noata, S. I. Murahashi, Synlett 1991, 693–695; b) A. Til-
lack, I. Rudloff, M. Beller, Eur. J. Org. Chem. 2001, 523–528.
W. J. Yoo, C. J. Li, J. Am. Chem. Soc. 2006, 128, 13064–13065.
K. Ekoue-Kovi, C. Wolf, Org. Lett. 2007, 9, 3429–3432.
S. Y. Seo, T. J. Marks, Org. Lett. 2008, 10, 317–319.
C. Gunanathan, Y. B. David, D. Milstein, Science 2007, 317,
790–792.
[15]
[16]
[17]
[18]
1
ethyl acetate mixture and analyzed by H NMR spectroscopy, gas
chromatography, and GC–MS. A similar procedure was followed
for the synthesis of amides from benzyl alcohol with primary
amines.
[19]
[20]
[21]
H. Togo, S. Iida, Synlett 2006, 2159–2175.
N. Mori, H. Togo, Tetrahedron 2005, 61, 5915–5925.
Preliminary results have been communicated for publication in
Synthesis.
In the case of oxidative amidation of aromatic aldehydes with
benzylamines, it is observed that a fraction of the benzylamine
derivatives are converted into their corresponding aldehydes,
resulting in a mixture of amide products, which were analyzed
by NMR spectroscopy and gas chromatography.
B. M. Dean, M. P. V. Mijovi, J. Walker, J. Chem. Soc. 1961,
3394–3400.
M. W. Williams, G. T. Young, J. Chem. Soc. 1963, 881–889.
K. Nadia, B. Malika, K. Nawel, B. MedYazid, R. Zine, N.-E.
Aouf, J. Heterocycl. Chem. 2004, 41, 57–60.
K. Y. Lee, Y. H. Kim, M. S. Park, C. Y. Oh, W. H. Ham, J. Org.
Chem. 1999, 64, 9450–9458.
Supporting Information (see footnote on the first page of this arti-
1
cle): General information, experimental conditions, H NMR and
mass spectral data of all compounds.
[22]
Acknowledgments
C. U. M. and M. V. thank the Council of Scientific Industrial Re-
search (CSIR) and Department of Biotechnology (DBT) India,
respectively, for their fellowship.
[23]
[24]
[25]
[1] R. C. Larock in Comprehensive Organic Transformations,
WILEY-VCH, New York, 2nd ed., 1999.
[26]
[27]
[28]
[2] a) N. Sewald, H.-D. Jakubke in Peptides: Chemistry and Bio-
logy, Wiley-VCH, Weinheim, Germany, 2002; b) I. Johansson
in Kirk-Othmer Encyclopedia of Chemical Technology: Amides,
Fatty Acids (Ed.: J. I. Kroschwitz), 5th ed., Wiley, Hoboken,
NJ, 2004, v. 2, pp. 442–463.
[3] a) J. M. Humphrey, A. R. Chanberlin, Chem. Rev. 1997, 97,
2243–2266; b) M. Bodanszky in Peptide Chemistry: A Practical
Textbook, Springer-Verlag: New York, 1993; c) R. M. Al-
Zoubi, O. Marion, D. G. Hall, Angew. Chem. Int. Ed. 2008, 47,
S. Yamada, D. Morizono, K. Yamamoto, Tetrahedron Lett.
1992, 33, 4329–4332.
Oxidative amidation of primary amines with catalytic amounts
of iodine (2.5 mol-%) and TBHP for various aldehydes have
provided the coupled product in good yield, and the results will
be communicated in due course.
Received: May 2, 2008
Published Online: June 18, 2008
3622
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 3619–3622