Table 2 Cyanation of various aryl halides†
and 10). 1-Bromonaphthalene yields 90% 1-cyanonaphthalene
(Table 2, entry 11). Electronically deactivated m- and p-bromoani-
sole can be cyanated with very good yield (88–95%; Table 2,
entries 12 and 13). N- and S-heterocycles such as 3-bromopyridine,
3-bromothiophene, and 4-chloroquinaldine give the desired nitriles
in 78–87% yield (Table 2, entries 14–16).
In summary, we have developed a new general protocol for the
cyanation of aryl halides. For the first time potassium hex-
acyanoferrate(II) has been used as cyanide source. The advantages
of this “coupling reagent” are obvious: in contrast to other
cyanating agents potassium hexacyanoferrate(II) is less poisonous‡
and can be handled without special precaution. Due to the slow
release of cyanide ions a significantly improved catalyst productiv-
ity compared to previously known procedures is achieved.
The authors thank Dr W. Baumann, Dr C. Fischer, Mrs S.
Buchholz and Ms K. Reincke for analytical support. Generous
support from the state Mecklenburg-Vorpommern and the Fonds
der Chemischen Industrie are gratefully acknowledged. OMG (now
Umicore) is thanked for gifts of palladium compounds.
Cat.
conc.
(mol%) (%)
T
(°C)
Conv. Yield
Entry
Aryl halide
(%)
TON
1
2
120
120
0.1
0.01
100
100
86
87
860
8700
3
100
0.1
100
78
780
4
5
120
120
0.1
0.1
98
96
94
66
940
660
6
7
120
140
0.1
0.5
60
93
51
68
510
136
Notes and references
8
120
0.1
100
95
950
†
General procedure: Under inert conditions 2.0 mmol Na2CO3, 0.5
mmol K4[Fe(CN)6] {K4[Fe(CN)6]·3H2O is ground to a fine powder and
dried in vacuum (ca. 2 mbar) at 80 °C over night}, Pd(OAc)2 and ligand are
placed in a pressure tube. Then 2.0 mmol aryl halide and 2.0 mL solvent are
added. Stock solutions of Pd(OAc)2 and ligand were used for Pd contents
smaller than 0.5%. The pressure tube is sealed and heated at 120 °C for 16
h. After cooling to room temperature 3.0 mL dichloromethane and 0.4 mL
diethylene glycol di-n-butyl ether (internal standard) are added and the
mixture is analyzed by GC. For isolating the products the reaction mixture
is washed with water and the organic phase is dried over Na2SO4. After
evaporation of the solvents the residue is subjected to column chromatog-
raphy (silica, hexane–ethyl acetate). All prepared benzonitriles are known
compounds and identified by comparison (GC/MS) with authentic samples.
9
10
120
160
0.25
0.25
48
88
41
75
164
300
11
120
0.1
100
90
900
12
13
120
120
0.1
0.1
92
88
95
880
950
100
‡
KCN is extremely toxic [LDL0 (oral, human) = 2.86 mg kg21] and
develops HCN on contact with acidic water. K4[Fe(CN)6] is nontoxic and
used in food industry for metal precipitation in wine. Also it has been used
as anti-agglutinating auxiliary for NaCl (table salt) (cf. Roempp Lexikon
Chemie – Version 2.0, Georg Thieme Verlag, Stuttgart/New York, 1999). It
is soluble in water without decomposition.
14
15
140
140
0.1
0.1
97
95
86
87
860
870
1 J. Zanon, A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2003, 125,
2890.
16
140
0.1
91
78
780
2 (a) G. P. Ellis and T. M. Romney-Alexander, Chem. Rev., 1987, 87, 779;
(b) M. Sundermeier, A. Zapf and M. Beller, Eur. J. Inorg. Chem., 2003,
3513.
of the cyanide source to 0.17 equiv. still gave 92% of benzonitrile
(Table 1, entry 12). This demonstrates that all the six cyanide ions
bound to the iron(II) center are used in the cyanation reaction.
Interestingly, potassium hexacyanoferrate(III) in contrast is not
suitable as the cyanide source ( < 5% of benzonitrile), presumably
because of its oxidizing properties. Apart from Pd(OAc)2 other
palladium sources, e.g. Pd2(dba)3, performed equally well in the
model reaction. An important parameter is the reaction tem-
perature, which should not be < 120 °C (Table 1, entry 14).
Apparently at lower temperature cyanide is not transferred from the
iron center.
The new protocol was then applied to the cyanation of various
aryl halides (Table 2). In general, using 0.1 mol% catalyst at 120 °C
good to excellent yields of the desired benzonitriles are obtained. In
the case of electron deficient aryl bromides, e.g. for 4-bromoaceto-
phenone (Table 2, entries 1 and 2), even 0.01 mol% palladium are
sufficient for high yields (87%). Methyl 4-bromobenzoate (78%)
and 4-(trifluoromethyl)bromobenzene (94%) work similarly well,
while 3-bromobenzaldehyde gives 66% of 3-cyanobenzaldehyde
(Table 2, entries 3–5).
3 (a) L. Cassar, M. Foà, F. Montanari and G. P. Marinelli, J. Organomet.
Chem., 1979, 173, 335; (b) Y. Sakakibara, F. Okuda, A. Shimoyabashi,
K. Kirino, M. Sakai, N. Uchino and K. Takagi, Bull. Chem. Soc. Jpn.,
1988, 61, 1985; (c) Y. Sakakibara, Y. Ido, K. Sasaki, M. Sakai and N.
Uchino, Bull. Chem. Soc. Jpn., 1993, 66, 2776.
4 (a) K. Takagi, T. Okamoto, Y. Sakakibara and S. Oka, Chem. Lett., 1973,
471; (b) A. Sekiya and N. Ishikawa, Chem. Lett., 1975, 277; (c) K.
Takagi, T. Okamoto, Y. Sakakibara, A. Ohno, S. Oka and N. Hayama,
Bull. Chem. Soc. Jpn., 1975, 48, 3298; (d) K. Takagi, T. Okamoto, Y.
Sakakibara, A. Ohno, S. Oka and N. Hayama, Bull. Chem. Soc. Jpn.,
1976, 49, 3177; (e) J. R. Dalton and S. L. Regen, J. Org. Chem., 1979, 44,
4443; (f) Y. Akita, M. Shimazaki and A. Ohta, Synthesis, 1981, 974; (g)
N. Chatani and T. Hanafusa, J. Org. Chem., 1986, 51, 4714; (h) K.
Takagi, K. Sasaki and Y. Sakakibara, Bull. Chem. Soc. Jpn., 1991, 64,
1118; (i) Y. Anderson and B. Långström, J. Chem. Soc., Perkin Trans. 1,
1994, 1395; (j) B. A. Anderson, E. C. Bell, F. O. Ginah, N. K. Harn, L.
M. Pagh and J. P. Wepsiec, J. Org. Chem., 1998, 63, 8224; (k) T. Okano,
J. Kiji and Y. Toyooka, Chem. Lett., 1998, 425; (l) P. E. Maligres, M. S.
Waters, F. Fleitz and D. Askin, Tetrahedron Lett., 1999, 40, 8193; (m) F.
Jin and P. N. Confalone, Tetrahedron Lett., 2000, 41, 3271; (n) M.
Sundermeier, A. Zapf, M. Beller and J. Sans, Tetrahedron Lett., 2001, 42,
6707; (o) J. Ramnauth, N. Bhardwaj, P. Renton, S. Rakhit and S.
Maddaford, Synlett, 2003, 2237.
5 M. Sundermeier, A. Zapf, S. Mutyala, W. Baumann, J. Sans, S. Weiss and
M. Beller, Chem. Eur. J., 2003, 9, 1828.
6 M. Sundermeier, A. Zapf and M. Beller, Angew. Chem., 2003, 115, 1700
(Angew. Chem., Int. Ed., 2003, 42, 1661).
7 M. Sundermeier, S. Mutyala, A. Zapf, A. Spannenberg and M. Beller, J.
Organomet. Chem., 2003, 684, 50.
8 A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W.
Henderickx and J. G. de Vries, Org. Lett., 2003, 5, 3285.
Interestingly, also a number of ortho-substituted aryl bromides
work well in the procedure. In the case of 2,4-difluorobromo-
benzene an increase in the catalyst concentration (to 0.5 mol%) and
reaction temperature (to 140 °C) leads to an improved yield of 68%
vs. 51% (Table 2, entries 6 and 7). 2-Bromotoluene gives 95% of
2-cyanotoluene under standard conditions (Table 2, entry 8). Even
2,6-dimethylbromobenzene is converted to 2-cyano-m-xylene in
75% yield in the presence of 0.25 mol% catalyst (Table 2, entries 9
C h e m . C o m m u n . , 2 0 0 4 , 1 3 8 8 – 1 3 8 9
1389