E
K. Iizumi et al.
Cluster
Synlett
Wang, Y. RSC Adv. 2012, 2, 6167. (e) Yu, P.; Morandi, M. Angew.
Chem. Int. Ed. 2017, 56, 15693. (f) Ueda, Y.; Tsujimoto, N.;
Yurino, T.; Tsurugi, H.; Mashima, K. Chem. Sci. 2019, 10, 994. For
methods using other organic cyanating reagents, see: (g) Jiang,
Z.; Huang, Q.; Chen, S.; Long, L.; Zhou, X. Adv. Synth. Catal. 2012,
354, 589. (h) Zheng, S.; Yu, C.; Shen, Z. Org. Lett. 2012, 14, 3644.
(i) Jiang, X.; Wang, J.-M.; Zhang, Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J.
Tetrahedron 2015, 71, 4883. (j) Chen, H.; Sun, S.; Liu, Y. A.; Liao,
X. ACS Catal. 2020, 10, 1397.
M. Angew. Chem. Int. Ed. 2016, 55, 11810. (c) Takise, R.; Isshiki,
R.; Muto, K.; Itami, K.; Yamaguchi, J. J. Am. Chem. Soc. 2017, 139,
3340. (d) Yue, H.; Guo, L.; Liao, H.-H.; Cai, Y.; Zhu, C.; Rueping,
M. Angew. Chem. Int. Ed. 2017, 56, 4284. (e) Isshiki, R.; Muto, K.;
Yamaguchi, J. Org. Lett. 2018, 20, 1150. (f) Malapit, C. A.; Borrell,
M.; Milbauer, M. W.; Brigham, C. E.; Sanford, M. S. J. Am. Chem.
Soc. 2020, 142, 5918.
(16) (a) Takise, R.; Muto, K.; Yamaguchi, J.; Itami, K. Angew. Chem. Int.
Ed. 2014, 53, 6791. (b) Koch, E.; Takise, R.; Studer, A.;
Yamaguchi, J.; Itami, K. Chem. Commun. 2015, 51, 855.
(17) (a) Chatupheeraphat, A.; Liao, H.-H.; Lee, S.-C.; Rueping, M. Org.
Lett. 2017, 19, 4255. For a related reaction using aroyl chlorides,
see: (b) Wang, Z.; Wang, X.; Ura, Y.; Nishihara, Y. Org. Lett. 2019,
21, 6779.
(18) A main reason for the modest yield of some products was the
decomposition of the phenyl esters to the corresponding car-
boxylic acids.
(9) (a) Gan, Y.; Wang, G.; Xie, X.; Liu, Y. J. Org. Chem. 2018, 83,
14036. (b) Xu, W.; Xu, Q.; Li, J. Org. Chem. Front. 2015, 2, 231.
(10) Kotani, S.; Sakamoto, M.; Osakama, K.; Nakajima, M. Eur. J. Org.
Chem. 2015, 6606.
(11) Takise, R.; Itami, K.; Yamaguchi, J. Org. Lett. 2016, 18, 4428.
(12) Wang, L.; Wang, Y.; Shen, J.; Chen, Q.; He, M.-Y. Org. Biomol.
Chem. 2018, 16, 4816.
(13) (a) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46,
5864. (b) Shi, S.; Nolan, S. P.; Szostak, M. Acc. Chem. Res. 2018,
51, 2589. (c) Guo, L.; Rueping, M. Chem. Eur. J. 2018, 24, 7794.
(d) Lu H., Yu T.-Y., Xu P.-F., Wei H.; Chem. Rev.; 2020, in press;
DOI: 10.1021/acs.chemrev.0c00153
(14) For selected examples of decarbonylative C–C bond formations,
see: (a) Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S.
J. Am. Chem. Soc. 2001, 123, 4849. (b) Gooßen, L. J.; Paetzold, J.
Angew. Chem, Int. Ed. 2002, 41, 1237. (c) Gooßen, L. J.; Paetzold,
J. Angew. Chem. Int. Ed. 2004, 43, 1095. (d) Amaike, K.; Muto, K.;
Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573.
(e) Meng, L.; Kamada, Y.; Muto, K.; Yamaguchi, J.; Itami, K.
Angew. Chem. Int. Ed. 2013, 52, 10048. (f) Muto, K.; Yamaguchi,
J.; Musaev, D. G.; Itami, K. Nat. Commun. 2015, 6, 7508. (g) Okita,
T.; Kumazawa, K.; Takise, R.; Muto, K.; Itami, K.; Yamaguchi, J.
Chem. Lett. 2017, 46, 218. (h) Isshiki, R.; Takise, R.; Itami, K.;
Muto, K.; Yamaguchi, J. Synlett 2017, 28, 2599. (i) Liu, X.; Jia, J.;
Rueping, M. ACS Catal. 2017, 7, 4491. (j) Okita, T.; Muto, K.;
Yamaguchi, J. Org. Lett. 2018, 20, 3132. (k) Chatupheeraphat, A.;
Liao, H.-H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.;
Caballo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724.
(l) Masson-Makdissi, J.; Vandavasi, J. K.; Newman, S. G. Org. Lett.
2018, 20, 4094. (m) Matsushita, K.; Takise, R.; Muto, K.;
Yamaguchi, J. Sci. Adv. 2020, 6, eaba7614.
(19) 2-Naphthonitrile (3A); Typical Procedure
A 20-mL glass vessel, equipped with a J. Young O-ring tap and a
magnetic stirring bar, was charged with Ni(OAc)2·4 H2O (10.0
mg, 0.040 mmol, 10 mol%) and Na2CO3 (63.6 mg, 0.60 mmol, 1.5
equiv). The vessel was evacuated and its contents were dried
with a heat gun. The vessel was then cooled to r.t., and filled
with N2 gas. Phenyl 2-naphthoate (1A; 99.3 mg, 0.40 mmol, 1.0
equiv), 2-morpholinoacetonitrile (2a: 100.9 mg, 0.80 mmol, 2.0
equiv), and dcypt (38.1 mg, 0.080 mmol, 20 mol%) were added,
and the vessel was evacuated and refilled with N2 gas three
times. Toluene (1.6 mL) was added, and the vessel was sealed
with the O-ring tap and heated at 160 °C in a nine-well reaction
block for 24 h with stirring. The mixture was then cooled to r.t.
and passed through a short silica-gel pad with EtOAc as an
eluent. The filtrate was concentrated in vacuo, and the residue
was purified by preparative TLC (hexane–EtOAc, 4:1) to give a
white solid; yield: 46.3 mg (76%) (CAUTION! The reaction should
be conducted in a well-functioning fume hood to avoid expo-
sure to the CO gas generated by the reaction. After the reaction,
the vessel should be opened in the fume hood for the same rea-
son.)
1H NMR (400 MHz, CDCl3): = 8.23 (s, 1 H), 7.93–7.87 (m, 3 H),
7.67–7.58 (m, 3 H). 13C NMR (101 MHz, CDCl3): = 134.6, 134.1,
132.2, 129.1, 129.0, 128.4, 128.0, 127.6, 126.3, 119.2, 109.3.
HRMS (DART): m/z [M + NH4]+ calcd for C11H11N2: 171.0917;
found: 171.0915.
(15) For selected examples of decarbonylative carbon–heteroatom
bond formations, see: (a) Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. ACS
Catal. 2016, 6, 6692. (b) Guo, L.; Chatupheeraphat, A.; Rueping,
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–E