Organometallics
Article
CH2), 1.70 (m, 2H, CH2), (m, 2H, CH2), 0.88−1.22 (PiPr2), −22.82
(t, J = 57 Hz, Fe-H); minor isomer: 10.35 (s, 1H, N-H), 8.81 (s, 1H,
HCO), (PhH, CH2, PiPr2 peaks all overlap with those of the major
isomer, as confirmed by HMQC NMR spectra), −25.98 (t, J = 51 Hz,
Fe-H). 31P{1H} NMR (C6D6): minor isomer: δ 96.85 (d, J = 45 Hz);
major isomer: 91.14 (t, J = 18 Hz). Partial 13C{1H} from HMQC for
both isomers: δ 177.08 (HC(O)), 128.49 (Ar), 127.72 (Ar),
122.71(Ar), 53.93, 53.39, 29.43, 28.94, 26.13, 21.11, 24.55, 19.97,
19.74, 19.48 (CH2 and PiPr2).
General Method for Catalytic Amide Hydrogenation
Studies. Inside a glovebox, a glass reactor liner (50 mL) was charged
with the amide (7 mmol) and THF to a total volume of 5 mL. Then a
solution of 1 (either 5.0 or 1.25 μmol) in THF was added to this
mixture via microsyringe. If LiOTf, formanilide, or other additives
were tested, they were added at this time. Then the Parr reactor was
sealed and removed from the glovebox. The reactor was pressurized
with commercial-grade H2 at ambient temperature (∼450 or 900 psi)
and then heated (100 or 120 °C in typical experiments) with
mechanical stirring. After the allotted time (4−16 h), the reactor was
cooled by submersion in an ice bath, and the H2 was slowly vented.
The product solution was then analyzed by 1H NMR spectroscopy and
GC-MS or GC-FID using mesitylene as a standard.
Brosinski, S.; Leitner, W.; Cole-Hamilton, D. J. Chem. Commun. 2012,
48, 12249−12262. (c) Coetzee, J.; Dodds, D. L.; Klankermayer, J.;
Brosinski, S.; Leitner, W.; Slawin, A. M. Z.; Cole- Hamilton, D. J.
Chem. - Eur. J. 2013, 19, 11039−11050. (d) vom Stein, T.; Meuresch,
M.; Limper, D.; Schmitz, M.; Holscher, M.; Coetzee, J.; Cole-
Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014,
136, 13217−13225. (e) Yuan, M.-L.; Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L.
ACS Catal. 2016, 6, 3665−3669.
(7) For examples of deaminative hydrogenation, see these and
subsequent references: (a) Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi,
A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240−4242.
(b) John, J. M.; Bergens, S. H. Angew. Chem., Int. Ed. 2011, 50,
10377−10380. (c) Miura, T.; Held, I. E.; Oishi, S.; Naruto, M.; Saito,
S. Tetrahedron Lett. 2013, 54, 2674−2678. (d) Kita, Y.; Higuchi, T.;
Mashima, K. Chem. Commun. 2014, 50, 11211−11213. (e) Rezayee, N.
M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028−
1031. (f) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew.
Chem., Int. Ed. 2015, 54, 6186−6189.
(8) John, J. M.; Loorthuraja, R.; Antoniuk, E.; Bergens, S. H. Catal.
Sci. Technol. 2015, 5, 1181−1186.
(9) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D.
J. Am. Chem. Soc. 2010, 132, 16756−16758.
(10) Cabrero-Antonino, J. R.; Alberico, E.; Drexler, H.-J.; Baumann,
W.; Junge, K.; Junge, H.; Beller, M. ACS Catal. 2016, 6, 47−54.
(11) (a) Garg, J. A.; Chakraborty, S.; Ben-David, Y.; Milstein, D.
Chem. Commun. 2016, 52, 5285−5288. (b) Schneck, F.; Assmann, M.;
Balmer, M.; Harms, K.; Langer, R. Organometallics 2016, 35, 1931−
1943. (c) Rezayee, N. M.; Samblanet, D. C.; Sanford, M. S. ACS Catal.
2016, 6, 6377−6383.
(12) (a) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.;
Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948−
9952. (b) Elangovan, S.; Wendt, B.; Topf, C.; Bachmann, S.; Scalone,
M.; Spannenberg, A.; Jiao, H.; Baumann, W.; Junge, K.; Beller, M. Adv.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Crystallographic data for 2 (CIF)
Additional experimental data and selected NMR spectra
AUTHOR INFORMATION
Corresponding Author
Notes
Synth. Catal. 2016, 358, 820−825. (c) Gluer, A.; Forster, M.; Celinski,
̈
̈
■
V. R.; Schmedt auf der Guenne, J.; Holthausen, M. C.; Schneider, S.
ACS Catal. 2015, 5, 7214−7217. (d) Sharninghausen, L. S.; Mercado,
B. Q.; Crabtree, R. H.; Hazari, N. Chem. Commun. 2015, 51, 16201−
16204. (e) Bielinski, E. A.; Forster, M.; Zhang, Y.; Bernskoetter, W.
̈
The authors declare no competing financial interest.
H.; Hazari, N.; Holthausen, M. C. ACS Catal. 2015, 5, 2404−2415.
(f) Fairweather, N. T.; Gibson, M. S.; Guan, H. Organometallics 2015,
34, 335−339. (g) Bornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.;
Alberico, E.; Baumann, W.; Junge, H.; Junge, K.; Beller, M. Nat.
Commun. 2014, 5, 4111. (h) Bielinski, E. A.; Lagaditis, P. O.; Zhang,
ACKNOWLEDGMENTS
■
The Curators of the University of Missouri are gratefully
acknowledged for support of this work. N.H. and W.H.B are
Fellows of the Alfred P. Sloan Foundation.
Y.; Mercado, B. Q.; Wurtele, C.; Bernskoetter, W. H.; Hazari, N.;
̈
Schneider, S. J. Am. Chem. Soc. 2014, 136, 10234−10237.
(i) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.;
Baumann, W.; Junge, H.; Gallou, F.; Beller, M. Angew. Chem., Int. Ed.
2014, 53, 8722−8726. (j) Chakraborty, S.; Dai, H.; Bhattacharya, P.;
Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H. J. Am. Chem.
Soc. 2014, 136, 7869−7872. (k) Lagaditis, P. O.; Sues, P. E.;
Sonnenberg, J. F.; Wan, K. Y.; Lough, A. J.; Morris, R. H. J. Am. Chem.
Soc. 2014, 136, 1367−1380.
(13) (a) Xu, R.; Chakraborty, S.; Bellows, S. M.; Yuan, H.; Cundari,
T. R.; Jones, W. D. ACS Catal. 2016, 6, 2127−2135. (b) Zhang, Y.;
MacIntosh, A.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado,
B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291−4299.
(c) Bonitatibus, P. J.; Chakraborty, S.; Doherty, M. D.; Siclovan, O.;
Jones, W. D.; Soloveichik, G. L. Proc. Natl. Acad. Sci. U. S. A. 2015,
112, 1687−1692. (d) Chakraborty, S.; Lagaditis, P. O.; Forster, M.;
Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.;
Schneider, S. ACS Catal. 2014, 4, 3994−4003. (e) Chakraborty, S.;
Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2014, 136, 8564−
8567.
REFERENCES
■
(1) Arthur, G. The Amide Linkage: Selected Structural Aspects in
Chemistry, Biochemistry, and Materials Science; Wiley-Interscience:
Hoboken, NJ, 2000.
(2) (a) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G.
R.; Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman,
B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411−420.
Wieland, T.; Bodanszky, M. The World of Peptides: A Brief History of
Peptide Chemistry; Springer: Berlin, 1991.
(3) Smith, A. M.; Whyman, R. Chem. Rev. 2014, 114, 5477−5510.
(4) (a) Cantillo, D. Eur. J. Inorg. Chem. 2011, 2011, 3008−3013.
(b) Li, H.; Hall, M. B. ACS Catal. 2015, 5, 1895−1913.
(5) (a) Krackl, S.; Someya, C. I.; Enthaler, S. Chem. - Eur. J. 2012, 18,
15267−15271. (b) Beamson, G.; Papworth, A. J.; Philipps, C.; Smith,
A. M.; Whyman, R. J. Catal. 2010, 269, 93−102. (c) Burch, R.; Paun,
C.; Cao, M.; Crawford, P.; Goodrich, P.; Hardacre, C.; Hu, P.;
McLaughlin, L.; Sa, J.; Thompson, J. M. J. Catal. 2011, 283, 89−97.
(d) Stein, M.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 2231−2234.
(e) Coetzee, J.; Manyar, H. G.; Hardacre, C.; Cole-Hamilton, D. J.
ChemCatChem 2013, 5, 2843−2847.
(14) No other organic products, except for residual starting material,
were observed by NMR spectroscopy and GC.
(15) Shekhar, A. C.; Kumar, A. R.; Sathaiah, G.; Paul, V. L.; Sridhar,
M.; Rao, P. S. Tetrahedron Lett. 2009, 50, 7099−7101. (b) Kim, J. G.;
Jang, D. O. Tetrahedron Lett. 2010, 51, 683−685. (c) Ohtaka, J.;
(6) For examples of deoxygenative hydrogenation, see: (a) Nunez
Magro, A. A.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun.
2007, 3154−3156. (b) Dodds, D. L.; Coetzee, J.; Klankermayer, J.;
́
̃
G
Organometallics XXXX, XXX, XXX−XXX