Advanced Synthesis & Catalysis
10.1002/adsc.201700075
hypervalent iodines as oxidants, see: a) S. C. Lu, P. R.
Zheng, G. Liu, J. Org. Chem. 2012, 77, 7711; b) F. F.
Zhao, X. Liu, R. Qi, D. Zhang-Negrerie, J. H. Huang, Y. F.
Du, K. Zhao, J. Org. Chem. 2011, 76, 10338; c) Y. H.
Zheng, X. M. Li, C. F. Ren, D. Zhang-Negrerie, Y. F. Du,
K. Zhao, J. Org. Chem. 2012, 77, 10353; d) T. Dohi, N.
Takenaga, T. Nakae, Y. Toyoda, M. Yamasaki, M. Shiro,
H. Fujioka, A. Maruyama, Y. Kita, J. Am. Chem. Soc.
Chem. 2007, 72, 8076.
[13] Selected examples for iodine(III)-mediated cascade
reactions for the synthesis of spiroheterocycles, see: a) J.
W. Wang, Y. C. Yuan, R. Xiong, D. Zhang-Negrerie, Y. F.
Du, K. Zhao, Org. Lett. 2012, 14, 2210; b) H. Wu, Y. P.
He, L. Xu, D. Y. Zhang, L. Z. Gong, Angew. Chem., Int.
Ed. 2014, 53, 3466; c) Y. Cao, X. Zhang, G. Y. Lin, D.
Zhang-Negrerie, Y. F. Du, Org. Lett. 2016, 18, 5580; d) T.
Dohi, D. Kato, R. Hyodo, D. Yamashita, M. Shiro, Y. Kita,
Angew. Chem., Int. Ed. 2011, 50, 3784; Angew. Chem.
2011, 123, 3868; e) T. Dohi, T. Nakae, Y. Ishikado, D.
Kato, Y. Kita, Org. Biomol Chem. 2011, 9, 6899; f) D. Y.
Zhang, L. Xu, H. Wu, L. Z. Gong, Chem.−Eur. J. 2015, 21,
10314.
2
013, 135, 4558.
[
7] For recent papers describing the construction of
heterocyles via C−C bond formation employing
hypervalent iodines as oxidants, see: a) S. Desjardins, J. C.
Andrez, S. Canesi, Org. Lett. 2011, 13, 3406; b) T. Dohi,
Y. Minamitsuji, A. Maruyama, S. Hirose, Y. Kita, Org.
Lett. 2008, 10, 3559; c) C. Zheng, R. H. Fan, Chem.
Commun. 2011, 47, 12221; d) Y. Kita, K. Morimoto, M.
Ito, C. Ogawa, A. Goto, T. Dohi, J. Am. Chem. Soc. 2009,
[14] For selected examples of biological activities and
applications of iodonium salts, see: a) W. Chalupa, J. A.
1
31, 1668; e) K. Matcha, A. P. Antonchick, Angew. Chem.,
Int. Ed. 2013, 52, 2082; f) J. X. Liang, J. B. Chen, F. X. Du, Pastterson, R. C. Parish, A. W. Chow, J. Anim. Sci. 1983,
X. H. Zeng, L. Li, H. B. Zhang, Org. Lett. 2009, 11, 2820.
8] For papers describing the construction of heterocyles
via C−S bond formation employing hypervalent iodines as
oxidants, see: a) N. K. Downer-Riley, Y. A. Jackson,
Tetrahedron 2008, 64, 7741; b) P. Huang, X. L. Fu, Y. J.
Liang, R. Zhang, D. W. Dong, Aust. J. Chem. 2012, 65,
57, 195; b) J. M. Cooper, R. K. H. Petty, D. J. Hayes, J. A.
Morgan-Hughes, J. B. Clark, Biochem. Pharmacol. 1988,
37, 687; c) J. A. Ellis, S. J. Mayer, O. T. G. Jones,
Biochem. J. 1988, 251, 887; d) A. Bishop, M. A. Paz, P. M.
Gallop, M. L. Karnovsky, Free Radical Biol. Med. 1994,
17, 311.
[
1
8
21; c) D. S. Bose, M. Idrees, J. Org. Chem .2006, 71,
261; d) A. Kumar, R. A. Maurya, P. Ahmad, J. Comb.
[15] CCDC 1528484 (2e) contains the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge
Chem. 2009, 11, 198; e) N. K. Downer-Riley, Y. A.
Jackson, Tetrahedron 2008, 64, 7741.
unit cell parameters: 10.0271(18)
b=11.878(2) c =12.522(2) P-1.
Centre
via
[
9] For papers describing the N−N bond formation
38 l6
H C
employing hypervalent iodine as an oxidant, see: a) A. J.
Kotali, J. Heterocycl. Chem. 1996, 33, 605; b) A. Correa, I.
Tellitu, E. Dominguez, R. SanMartin, J. Org. Chem. 2006,
F
6
I
2
N
4
O
10
,
a
=
[16] a) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016,
116, 3328; b) A. Rodriguez, W. J. Moran, J. Org. Chem.
2016, 81, 2543; c) B. L. Williamson, R. R. Tykwinski, P. J.
Stang, J. Am. Chem. Soc. 1994, 116, 93; d) P. P.
Thottumkara, T. K. Vinod, Org. Lett., 2010, 12, 5640; e) T.
Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu,
H. M. Zhao, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121,
7
1, 3501; c) E. Malamidou-Xenikaki, S. Spyroudis, M.
Tsanakopoulou, D. Hadjipavlou-Litina, J. Org. Chem.
009, 74, 7315; d) K. W. Wang, X. L. Fu, J. Y. Liu, Y. J.
Liang, D. W. Dong, Org. Lett. 2009, 11, 1015.
10] For papers describing the construction of heterocyles
via N−O bond formation employing hypervalent iodine as
2
[
an oxidant, see: a) H. Sajiki, K. Hattori, M. Sako, K. Hirota, 11674; f) C. Liu, Q. Wang, Org. Lett. 2016, 18, 5118.
Synlett 1997, 1409; b) O. Prakash, R. K. Saini, S. P. Singh,
R. S. Varma, Tetrahedron Lett. 1997, 38, 3147.
[17] a) A. Sreenithya, B. S. Raghavan, Org. Lett. 2014, 16,
6224; b) R. M. Morisrty, C. Condeiu, A. Tao, O. Prskash,
Tetrahedron Lett. 1997, 38, 2401.
[
11] For papers describing the construction of heterocyles
via N−S bond formation employing hypervalent iodine as
an oxidant, see: a) A. Correa, I. Tellitu, E. Dominguez, R.
[18] a) L. Liu, T. H. Zhang, Y. F. Yang, D. Zhang-
Negrerie, X. H. Zhang, Y. F. Du, Y. D. Wu, K. Zhao, J.
SanMartin, Org. Lett. 2006, 8, 4811; b) J. Huang, Y. M. Lu, Org. Chem. 2016, 81, 4058; b) Y. Chen, T. Ju, J. W. Wang,
B. F. Qiu, Y. J. Liang, D. W. Dong, Synthesis 2007, 2791.
12] Selected examples for iodine(III)-mediated cascade
reactions for the synthesis of polyheterocycles: a) S. Tang,
W. Q. Yu, Y. F. Du, K. Zhao, Synlett 2010, 231; c) X.
Zhang, C. Yang, D. Zhang-Negrerie, Y. F. Du, Chem.−Eur.
J. 2015, 21, 51.
[
P. Peng, S. F. Pi, Y. Liang, N. X. Wang, J. H. Li, Org. Lett.
[19] We appreciate the suggestion of further investigating
the transformations of spirooxindole iodonium salt 2a by
one reviewer. Our preliminary study found that 2a could
2
008, 10, 1179; b) B. A. Mendelsohn, S. Lee, S. Kim, F.
Teyssier, V. S. Aulakh, M. A. Ciufolini, Org. Lett. 2009,
1, 1539; c) V. Rauniyar, Z. J. Wang, H. E. Burks, F. D.
Toste, J. Am. Chem. Soc. 2011, 133, 8486; d) K. S.
1
be converted to 1-methylisatin upon treatment with
o
Cu(OTf)
2
at 75 C. See SI for details.
5
This article is protected by copyright. All rights reserved.