Organometallics
COMMUNICATION
giving X-ray crystallographic data for 1 and 2. This material is
available free of charge via the Internet at http://pubs.acs.org.
’
AUTHOR INFORMATION
Corresponding Author
*
E-mail: snolan@st-andrews.ac.uk.
’
ACKNOWLEDGMENT
This work was supported by the ERC (Advanced Investigator
Award to SPN-FUNCAT). S.P.N. is a Royal Society Wolfson
Research Merit Award holder.
’
REFERENCES
(
1) (a) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
b) Wenzel, T. T. Stud. Surf. Catal. 1991, 66, 545–554. (c) Jessop,
P. G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425–2442.
d) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010,
32, 8858–8859. (e) Boogaert, I. F. F.; Fortman, G. C.; Furst,
M. R. L.; Cazin, C. S. J; Nolan, S. P. Angew. Chem., Int. Ed. 2010,
4, 8674–8677. (f) Ramon, R. S.; Gaillard, S.; Poater, A.; Cavallo, L.;
Slawin, A. M. Z.; Nolan, S. P. Chem. Eur. J. 2011, 17, 1238–1246.
g) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun 2011, 47, 3021–3024.
2) Roesky, H. W.; Singh, S.; Yusuff, K. K. M.; Maguire, J. A.;
(
2 2
Figure 2. Moles of H present in reactor calculated from H pressure:
4
ꢀ
(
a) reactor loaded with 84.7 mg of 1 (0.67 ꢁ 10 mol); (b) reactor
ꢀ4
(
1
loaded with 83.8 mg of 1 (0.66 ꢁ 10 mol).
[
Pd(PCO)(OH)] eliminates H O with a final product having two
2
4
of the PCO ligands only bound through their P atoms in a new
Pd(0) complex. The isopropylbenzene presumably forms via hydro-
genation of 1-benzyl-1-propene by 3, which is similar to the case for
the known hydrogenation catalyst [Pd(SIPr)(PCy )], which
interacts with H . Alternatively, the 12e [Pd(IPr)] intermediate
(
(
12
3
Hosmane, N. S. Chem. Rev. 2006, 106, 3813–3843.
13
ꢀ
2
(3) (a) Fulmer, G. R.; Muller, R. P.; Kemp, R. A.; Goldberg, K. I.
J. Am. Chem. Soc. 2009, 131, 1346–1347. (b) Gerber, R.; French, C. M.
Chem. Eur. J. 2010, 16, 6771–6775. (c) Fulmer, G. R.; Kaminsky, W.;
Kemp, R. A.; Goldberg, K. I. Organometallics 2011, 30, 1627–1635.
may have acted as the active catalyst in the hydrogenation of
1-benzyl-1-propene.
(
4) Cross, W. B.; Daly, C. G.; Acherman, R. L.; George, I. R.; Singh,
K. Dalton Trans. 2011, 40, 495–505.
5) (a) Nolan, S. P. J., Ed. N-Heterocyclic Carbenes in Synthesis; Wiley:
(
Additional confirmation of the reaction stoichiometry was
garnered from in situ measurement of the hydrogen pressure
change. The change in hydrogen pressure over the course of the
New York, 2006. (b) Glorius, F., Ed. N-Heterocyclic Carbenes in Transi-
tion Metal Catalysis; Springer: New York, 2007. (c) Cazin, C. S. J., Ed. N-
Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis;
Springer: New York, 2011. (d) Díez-Gonz ꢀa lez, S., Ed. N-Heterocyclic
Carbenes; RSC Publishing: Cambridge, U.K., 2011. (e) Díez-Gonz ꢀa lez,
S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612–3676.
reaction showed that 3 equiv of H gas were consumed for every
2
1
mol of 1 loaded into the reactor (Figure 2).
Reaction of 1 with PCy in THF at reflux yields the previously
3
(6) (a) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.;
described Pd(0) complex [Pd(IPr)(PCy )] (4). This, however,
3
Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101–4111. (b) Navarro, O.;
Marion, N.; Mei, J.; Nolan, S. P. Chem. Eur. J. 2006, 12, 5142–5142.
(c) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449.
(7) Suzuki, A.; Miyaura, N. Chem. Rev. 1995, 95, 2457–2483.
(8) CCDC-831869 (1) and CCDC-831870 (2) contain supplemen-
tary crystallographic data for this contribution. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
is not an efficient reaction, due to thermal decomposition of 1.
This also is in contrast with previous reports on similar phosphine
complexes of the form [Pd(PR )(OH)L] , in which phosphine
3
2
addition resulted inphosphine ligation toformanequilibrium with
14
monomeric species, of the form [Pd(PR ) (OH)L]. Hydroge-
3
2
nolysis was also performed in the presence of added PCy to give
3
complex 4 in quantitative yields in reactions monitored by NMR
spectroscopy. Attempts to scale this reaction for an improved
synthesis of 4, however, were unsuccessful, and on a larger scale
reactions resulted in mixtures of 3 and 4.
In summary, the use of PdꢀOH complexes as precatalysts for
BuchwaldꢀHartwig aryl amination and SuzukiꢀMiyaura cou-
plings confirms the possibility of PdꢀOR species being inter-
mediates in the formation of catalytically active Pd(0) from
Pd(II)ꢀCl complexes. Additionally, the newly reported PdꢀOH
complexes are susceptible to hydrogenolysis, modeling this
potentially valuable catalytic step. Studies aimed at exploring
further the role of MꢀOH species in catalysis are ongoing.
(
9) Barloy, L.; Ramdeehul, S.; Osborn, J. A.; Carlotti, C.; Taulelle, F.;
De Cian, A.; Fischer, J. Eur. J. Inorg. Chem. 2000, 2523–2532.
10) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.;
Scarano, V.; Cavallo, L. Eur. J. Inorg. Chem. 2009, 1759–1766.
11) (a) Goeden, G. V.; Caulton, K. G. J. Am. Chem. Soc. 1981,
(
(
103, 7353–7355. (b) Thompson, J. S.; Bernard, K. A.; Rappoli, B. J.;
Atwood, J. D. Organometallics 1990, 9, 2727–2731. (c) Thompson, J. S.;
Randall, S. L.; Atwood, J. D. Organomatallics 1991, 10, 3906–3910.
(
d) Bohler, C.; Avarvari, N.; Schonberg, H.; Worle, M.; Grutzmacher, H.
Helv. Chim. Acta 2001, 84, 3127–3147.
12) Jurcik, V.; Nolan, S. P.; Cazin, C. S. J. Chem. Eur. J. 2009,
5, 2509–2511.
13) Fantasia, S.; Egbert, J. D.; Jurcik, V.; Cazin, C. S. J.; Jacobsen,
H.; Cavallo, L.; Heinekey, D. M.; Nolan, S. P. Angew. Chem., Int. Ed.
(
1
(
2
009, 48, 5182–5184.
’
ASSOCIATED CONTENT
(14) Grushin, V. V.; Alper, H. Organometallics 1996, 15, 5242–5245.
S
Supporting Information. Text and figures giving experi-
b
mental details and characterization data for 1 and 2 and CIF files
4
496
dx.doi.org/10.1021/om200579h |Organometallics 2011, 30, 4494–4496