at least with methoxyphenyl sulfonate esters, by passing to triplet
sensitized conditions.8 In contrast, the heterolytic path is exclusive
with phosphates and does not require sensitization. When the
homolytic path is followed with triflates, the role of oxygen is
determining for forming a strong acid and avoiding the release of
volatile substances (HF and CHF3) that can have an adverse effect
in a photoresist.
13 M. Shi, K. Yamamoto, Y. Okamoto and S. Takamuku, Photolysis
of aryl esters of tri- and tetracoordinate phosphorus compounds,
Phosphorus, Sulfur Silicon Relat. Elem., 1991, 60, 1–14.
14 R. K. Crossland and K. L. Servis, Facile synthesis of methanesulfonate
esters, J. Org. Chem., 1970, 35, 3195–3196.
15 R. H. Munday, J. R. Martinelli and S. L. Buchwald, Palladium-
catalyzed carbonylation of aryl tosylates and mesylates, J. Am. Chem.
Soc., 2008, 130, 2754–2755.
16 D. E. Frantz, D. G. Weaver, J. P. Carey, M. H. Kress and U. H. Dolling,
Practical synthesis of aryl triflates under aqueous conditions, Org. Lett.,
2002, 4, 4717–4718.
17 (a) F. Y. Kwong, C. W. Lai, M. Yu, Y. Tian and K. S. Chan, Palladium-
catalyzed phosphination of functionalized aryl triflates, Tetrahedron,
2003, 59, 10295–10305; (b) W. M. Seganish and P. DeShong, Prepara-
tion and palladium-catalyzed cross-coupling of aryl triethylammonium
bis(catechol) silicates with aryl triflates, J. Org. Chem., 2004, 69, 1137–
1143.
Acknowledgements
We are grateful to Dr Barbara Mannucci and Dr Federica Corana
of Centro Grandi Strumenti (University of Pavia) for technical
support.
18 K. Genkina, A. E. Shipov, T. A. Mastryukova and M. I. Kabachnik,
Synthesis of unsymmetrical triaryl phosphates under phase-transfer
catalysis, Russ. J. Gen. Chem., 1996, 66, 1742–1744.
19 R. Tacke, M. Strecker and R. Niedner, Sila-Pharmaka, 22.
Cholinesterase-hemmende organophosphorsa¨ureester und ihre sila-
analoga, Liebigs Ann. Chem., 1981, 1981, 387–395.
20 R. A. Levine and W. B. Person, Absolute infrared intensity measure-
ments of fluoroform (CHF3) fundamentals, J. Phys. Chem., 1977, 81,
1118–1119.
21 V. Dichiarante, D. Dondi, S. Protti, M. Fagnoni and A. Albini, A
meta effect in organic photochemistry?The case of SN1 reactions in
methoxyphenyl derivatives, J. Am. Chem. Soc., 2007, 129, 5605–5611,
correction: 11662.
Notes and references
1 (a) S.-Y. Moon and J.-M. Kim, Chemistry of photolithographic
imaging materials based on the chemical amplification concept, J.
Photochem. Photobiol. C, 2007, 8, 157–173; (b) J. M. Freche´t, The
photogeneration of acid and base within polymer coatings: Approaches
to polymer curing and imaging, Pure Appl. Chem., 1992, 64, 1239–1248;
(c) M. Shirai and M. Tsunooka, Photoacid and photobase generators:
Chemistry and applications to polymeric materials, Prog. Polym. Sci.,
1996, 21, 1–45; (d) P. J. Serafinowski and P. B. Garland, Novel photoacid
generators for photodirected oligonucleotide synthesis, J. Am. Chem.
Soc., 2003, 125, 962–965; (e) X. Gao, E. Gulari and X. Zhou, In situ
synthesis of oligonucleotide microarrays, Biopolymers, 2004, 73, 579–
596.
2 J. V. Crivello, The discovery and development of onium salt cationic
photoinitiators, J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 4241–
4254.
3 F. M. Houlihan, O. Nalamasu, J. Kometani and E. Reichmanis, A
retrospective on 2-nitrobenzyl sulfonate photoacid generators, J. Imag.
Sci. Technol., 1997, 41, 35–40.
4 Y.-S. Chang, J.-S. Jang and M.-L. Deinzer, Photochemistry of irgasan-
triflate: A simple conversion of an aromatic hydroxyl group to chlorine
in the synthesis of polychlorinated diphenyl ethers and polychlorinated
dibenzofurans, Tetrahedron, 1990, 46, 4161–4164.
5 (a) T. Ueno, L. Schlegel, N. Hayashi, H. Shiraishi and T. Iwayanagi,
Acid formation from various sulfonates in a chemical amplification
positive resist, Polym. Eng. Sci., 1992, 32, 1511–1515; (b) L. Schlegel, T.
Ueno, H. Shiraishi, N. Hayashi and T. Iwayanagi, Acid formation and
deprotection reaction by novel sulfonates in a chemical amplification
positive photoresist, Chem. Mater., 1990, 2, 299–305.
6 L. Schlegel, T. Ueno, H. Shiraishi, N. Hayashi and T. Iwayanagi, Highly
sensitive positive deep UV resist utilizing a sulfonate acid generator and
a tetrahydropyranyl inhibitor, Microelectron. Eng., 1991, 13, 33–36.
7 (a) V. Dichiarante and M. Fagnoni, Aryl cation chemistry as an
emerging versatile tool for metal-free arylations, Synlett, 2008, 787–
800; (b) M. Fagnoni and A. Albini, Arylation reactions: the photo- SN1
path via phenyl cation as an alternative to metal catalysis, Acc. Chem.
Res., 2005, 38, 713–721; (c) M. Slegt, S. Hermen, H. S. Overkleeft and
G. Lodder, Fingerprints of singlet and triplet phenyl cations, Eur. J.
Org. Chem., 2007, 5364–5375.
8 M. De Carolis, S. Protti, M. Fagnoni and A. Albini, Metal-free
cross-coupling reactions of aryl sulfonates and phosphates through
photoeterolysis of aryl-oxygen bonds, Angew. Chem., Int. Ed., 2005,
44, 1232–1236.
22 V. Dichiarante, M. Fagnoni and A. Albini, Eco-friendly hydrodehalo-
genation of electron-rich aryl chlorides and fluorides by photochemical
reaction, Green Chem., 2009, 11, 942–945.
23 O. A. Snytnikova, A. N. Simonov, O. P. Pestunova, V. N. Parnom and Y.
P. Tsentalovich, Study of the photoinduced formose reaction by flash
and stationary photolysis, Mendeleev Commun., 2006, 16, 9–11.
24 Studies on the photodecomposition of phenyldiazonium ions demon-
strated that singet phenyl cations add non-selectively even to weak
nucleophiles. See: S. Milanesi, M. Fagnoni and A. Albini, Cationic
arylation through photo(sensitised) decomposition of diazonium salts.
Chemoselectivity of triplet phenyl cations, Chem. Commun., 2003, 216–
217.
25 See, for example: J. Andraos, G. G. Barclay, D. R. Medeiros, M.
V. Baldovi, J. C. Scaiano and R. Sinta, Model studies on the
photochemistry of phenolic sulfonate photoacid generators, Chem.
Mater., 1998, 10, 1694–1699.
26 E. Robert-Banchereau, S. Lacombe and J. Ollivier, Unsensitized pho-
tooxidation of sulfur compounds with molecular oxygen in solution,
Tetrahedron, 1997, 53, 2087–2102.
27 F. Bertrand, F. Leguyader, L. Liguori, G. Ouvry, B. Quiclet-Sire, S.
Seguin and S. Z. Zard, a-Scission of sulfonyl radicals: a versatile process
for organic synthesis, C. R. Acad. Sci. II C, 2001, 4, 547–555.
28 D. Gonbeau, M. F. Guimon, S. Duplantier, J. Ollivier and G. Pfister-
Guillouzo, Sulfochloration of trifluoromethane. Theoretical study of
the trifluoromethane sulfonyl radical, Chem. Phys., 1989, 135, 85–89.
29 L. S. Guss and I. M. Kolthoff, The behavior of sulfur dioxide as an
acid in methanol, J. Am. Chem. Soc., 1944, 66, 1484–1488.
30 A. Seubert and G. Wu¨nsch, Nebenreaktionen in Karl-Fischer-
reagentien, Fresenius’ Z. Anal. Chem., 1989, 334, 256–260.
31 E. R. Morris and J. C. J. Thynne, Reactions of radicals containing
fluorine. Part 1. Hydrogen and deuterium atom abstraction from
trideuteromethanol by trifluoromethyl radicals, Trans. Faraday Soc.,
1968, 64, 414–421.
9 S. Lazzaroni, D. Dondi, M. Fagnoni and A. Albini, Geometry and
energy of substituted phenyl cations, J. Org. Chem., 2008, 73, 206–211.
10 R. D. Allen, J. Opitz, C. E. Larson, T. I. Wallow, R. A. DiPietro,
G. Breyta, R. Sooriyakumaran and D. C. Hofer, The influence of
photoacid structure on the design and performance of 193 nm resists,
J. Photopolym. Sci. Technol., 1997, 10, 503–510.
11 (a) S. Lee, K. Arimitsu, S.-W. Park and K. Ichimura, Synthesis and
evaluation of novel acid amplifiers liberating fluoroalkanesulfonic
acids, J. Photopolym. Sci. Technol., 2000, 13, 215–216; (b) S. Kruger,
S. Revuru, C. Higgins, S. Gibbons, D. A. Freedman, W. Yueh, T. R.
Younkin and R. L. Brainard, Fluorinated acid amplifiers for EUV
lithography, J. Am. Chem. Soc., 2009, 131, 9862–9863.
32 J. Lillie, D. Behar, R. J. Sujdak and R. H. Schuler, Lifetime of
trifluoromethyl radical in aqueous solution, J. Phys. Chem., 1972, 76,
2517–2520.
33 K. Seppelt, Trifluoromethanol, CF3OH, Angew. Chem., Int. Ed. Engl.,
1977, 16, 322–323.
34 M. Avataneo, U. De Patto, M. Galimberti and G. Marchionni,
Synthesis of a,w-dimethoxyfluoropolyethers: reaction mechanism and
kinetics, J. Fluorine Chem., 2005, 126, 631–637.
35 R. Flyunt, O. Makogon, M. N. Schuchmann, K.-D. Asmus and C. von
Sonntag, OH-Radical-induced oxidation of methanesulfinic acid. The
reactions of the methanesulfonyl radical in the absence and presence of
dioxygen, J. Chem. Soc., Perkin Trans. 2, 2001, 787–792.
12 S. Protti and M. Fagnoni, Phosphate esters as “tunable” reagents in
organic synthesis, Chem. Commun., 2008, 3611–3621.
This journal is
The Royal Society of Chemistry and Owner Societies 2011
Photochem. Photobiol. Sci., 2011, 10, 123–127 | 127
©