3
Scheme 3. The synthesis of (+)-galbulin (2). Reagents and conditions: (a) NaH, Bu4NI, THF, BnBr, 92%; (b) Me3Al-n-BuLi(2:1),
toluene, −78°C to rt, 76%; (c) H2, Pd(OH)2, MeOH/CH3COOH(2:1), rt, 2 h, 93%; (d) NaIO4, THF/H2O(2:1), rt, 72%; (e) n-BuLi, THF,
−78°C, 73%; (f) HF-pyridine, CH3CN, rt, 72%.
2.
3.
4.
5.
Ayres D. C.; Loike J. D. Lignans: chemical, biological andclinical
properties, Cambridge University Press, 1990.
Ma, C. J.; Kim, S. R.; Kim, J.; Kim, Y. C. Brit. J. Pharmacol. 2005,
146(5), 752.
Lee, M. K.; Yang, H.; Ma, C.J.; Kim, Y. C. Biol. Pharm. Bull. 2007,
30(4), 814.
(a) Muller, A.; Vajda, M. J. Org. Chem. 1952, 17, 800; (b) Carnmalm,
B. Acta Chem. Scand. 1954, 8, 1827; (c) Schrecker, A. W.; Hartwell, J.
L. J. Am. Chem. Soc. 1955, 77, 432; (d) Birch, A. J.; Milligan, B.;
Smith, E.; Speake, R. N. J. Chem. Soc. 1958, 4471; (e) Crossley, N. S.;
Djerassi, C. J. Chem. Soc. 1962, 1459; (f) Biftu, T.; Hazra, B. G.;
Stevenson, R.; Williams, J. R. J. Chem. Soc., Perkin Trans. 1 1978,
1147; (g) Liu, J. S.; Huang, M. F.; Gao, Y. L.; Findlay, J. A. Can. J.
Chem. 1981, 59, 1680; (h) Landais, Y.; Lebrun, A.; Lenain, V.; Robin,
J. P. Tetrahedron Lett. 1987, 28, 5161; (i) Buckleton, J. S.; Cambie, R.
C.; Clark, G. R.; Craw, P. A.; Rickard, C. E. F.; Rutledge, P. S.;
Woodgate, P. D. Aust. J. Chem. 1988, 41, 305.
After many failed attempts, we decided to use Pfalts’s method,
thus the hydroxyl group of epoxy alcohol 7 was protected as
benzyl ether 8 (Scheme 2). But, under Pfalts’s condition[19a]
,
using Me3Al in the presence of catalytic amounts of butyllithium
proved to be unsatisfactory with our substrate as the substrate
was not completely consumed. It was then observed that the ratio
of Me3Al and n-BuLi is critical, and a condition (Me3Al/n-
BuLi=2:1) which Flippin used in related study on the 1-
(benzyloxy)-3,4-epoxyhexane[19b]
system
could
highly
regioselectively open the epoxide core of intermediate 8[20] to
provide alcohol 9 as a single epimer in 5 hours. The latter was
deprotected over Pd(OH)2 to afford the diol 10[21], which was
followed by oxidative cleavage with NaIO4 to give aldehyde
11[18,22]. Then, treatment of compound 11 with aryllithium,
formed in situ from 4-Bromoveratrole and n-BuLi, gave the
diarylbutane alcohol 12. Finally, we smoothly obtained (+)-
isogalbulin (1)[23] exclusively by stirring alcohol 12 at room
temperature with HF-pyridine, through the cyclisation of
6.
7.
8.
9.
Perry, C. W.; Kalnins, M. V.; Deitcher, K. H. J. Org. Chem. 1972, 37,
4371.
Kasatkin, A. N.; Checksfield, G.; Whitby, R. J. J. Org. Chem. 2000,
65, 3236.
Datta, P. K.; Yau, C.; Hooper, T. S.; Yvon, B. L.; Charlton J. L. J. Org.
Chem. 2001, 66, 8606.
carbocation [5d, 5e, 6, 24]
.
Similarly, the total synthesis of (+)-galbulin (2)[25] could be
achieved via the Sharpless asymmetric epoxidation of compound
6 induced by L-(+)-DIPT and followed above synthetic strategy
(Scheme 3). The 1H-NMR, 13C-NMR, optical rotations, MS data
and physical properties of synthetic (+)-isogalbulin (1) and (+)-
Hong, B. C.; Hsu, C. S.; Lee, G. H. Chem. Commun. 2012, 48, 2385.
10. So, M.; Kotake, T.; Matsuura, K.; Inui, M.; Kamimura, A. J. Org.
Chem. 2012, 77, 4017.
11. Prashad, M.; Kim, H. Y.; Har, D.; Repic, O.; Blacklock, T. J.
Tetrahedron Lett. 1998, 39, 9369.
12. Compound 4: [α]2D0 -0.492° (C 0.54, CHCl3); 1H NMR (CDCl3, 400
MHz) δ 9.72 (s, 1H), 6.81-6.79 (d, J = 8.0 Hz, 1H), 6.72-6.70 (d, J =
8.0 Hz, 1H), 6.69 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.05-3.00 (dd, J =
13.5, 5.9 Hz, 1H), 2.68-2.63 (m, 1H), 2.60-2.54 (dd, J = 13.5, 8.2 Hz,
1H), 1.11-1.09 (d, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ
204.5, 148.9, 147.6, 131.3, 121.0, 112.1, 111.2, 55.9, 55.8, 48.1, 36.3,
13.2; HR-MS (ESI) calcd for C12H16O3Na (M+Na)+: 231.09971, Found
231.09869.
galbulin (2) were consistent with reported data[5c, 5g, 9]
.
In summary, an efficient strategy for the synthesis of (+)-
isogalbulin (1) and (+)-galbulin (2) has been successfully
achieved in 10 steps from a common intermediate. The total
yields were 12.3% and 12.9% respectively. The principal features
of our synthetic strategy include using Evans asymmetric
alkylation, Sharpless asymmetric epoxidation reaction, and a
highly regioselective bimolecular nucleophilic substitution as the
key steps. This method might be of great value in terms of
simplicity and efficiency in elaboration of natural products which
possess 1-arylnaphthalen carbon skeleton.
13. Compound 5: [α]2D0 +54.0° (C 0.50,CHCl3); 1H NMR (CDCl3, 400
MHz) δ 6.98-6.93 (dd, J=15.6, 6.4 Hz, 1H), 6.79-6.77 (d, J = 8.0 Hz,
1H), 6.68-6.66 (d, J = 8.0 Hz, 1H), 6.64 (s, 1H), 5.76-5.72 (d, J = 15.6
Hz, 1H), 3.86 (s, 6H), 3.71 (s, 3H), 2.70-2.67 (m, 1H), 2.60-2.52 (m,
1H), 1.06-1.05 (d, J = 6.1 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ
167.1, 153.8, 148.6, 147.3, 132.0, 121.0, 119.5, 112.3, 111.0, 55.8,
55.7, 51.4, 42.0, 38.3, 18.7; HR-MS (ESI) calcd for C15H20O4Na
(M+Na)+: 287.12538, Found 287.12454.
14. Compound 6: [α]2D0 +34.71° (C 0.53, CHCl3); 1H NMR (CDCl3, 400
MHz) δ 6.79-6.77 (d, J = 8.1 Hz, 1H), 6.68-6.66 (m, 2H), 5.69-5.64
(dd, J = 15.5, 6.3 Hz, 1H), 5.60-5.54 (m, 1H), 4.08-4.06 (d, J = 5.5 Hz,
2H), 3.87 (s, 3H), 3.86 (s, 3H), 2.65-2.60 (m, 1H), 2.50-2.41 (m, 2H),
1.00-0.99 (d, J = 6.4 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 148.5,
147.1, 138.0, 133.1, 127.4, 121.0, 111.0, 63.6, 55.8, 55.7, 42.8, 38.0,
19.5; HR-MS (ESI) calcd for C28H41O6 (2M+H)+: 473.28977, Found
473.28979.
Acknowledgment
We are grateful to Professor Jiangong Shi and Ying Guo for
helpful discussions.
Supplementary data
Supplementary data (experimental procedures and analytical
data for all the new compounds) associated with this article can
be found, in the online version, at
15. Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, Y. S.; Masamune, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
16. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 101, 5974.
17. Mori K.; Nakazono Y. Tetrahedron 1986, 42, 6459.
References and notes
18. (a) Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1982, 23, 3597; (b) Roush, W. R.; Adam, M. A.;
Peseckis, S. M. Tetrahedron Lett. 1983, 24, 1377.
1.
Hughes, G. K.; Ritchie, E. Aust. J. Chem. 1954, 7, 104.