Journal of the American Chemical Society
Page 4 of 5
revealedꢀaꢀslightꢀreductionꢀinꢀtheꢀsurfaceꢀareaꢀofꢀtheꢀmaterialꢀ
FigureꢀS17ꢀ&ꢀS18,ꢀSI).ꢀThisꢀreductionꢀcouldꢀbeꢀattributedꢀtoꢀ
Universityꢀ(OSU)ꢀCampusꢀChemicalꢀInstrumentꢀCenterꢀ(CCIC)ꢀ
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
andꢀ Tanyaꢀ Whitmerꢀ forꢀ assistanceꢀ withꢀ theꢀ CP-MASꢀ NMRꢀ
measurementsꢀ andꢀ accessꢀ toꢀ theꢀ instrumentation.ꢀ Electronꢀ
microscopyꢀwasꢀperformedꢀatꢀtheꢀCenterꢀforꢀElectronꢀMicros-
copyꢀandꢀAnalysisꢀ(CEMAS)ꢀatꢀOSU.ꢀWeꢀalsoꢀthankꢀDr.ꢀYehiaꢀ
minorꢀ amountsꢀ ofꢀ desulfurizedꢀ productꢀ trappedꢀ withinꢀ theꢀ
poresꢀ ofꢀ Ni-DBA-2D-COF.ꢀ Inꢀ addition,ꢀ aꢀ mercuryꢀ poisoningꢀ
experimentꢀandꢀleachingꢀtestꢀhasꢀconfirmedꢀthatꢀtheꢀhetero-
geneityꢀofꢀNi-DBA-2D-COFꢀremainsꢀintactꢀ(seeꢀSectionꢀNꢀinꢀtheꢀ
SI).ꢀICP-MSꢀanalysisꢀofꢀtheꢀfiltrateꢀafterꢀcatalysisꢀalsoꢀrevealedꢀ
minimalꢀleachingꢀofꢀNiꢀionsꢀ(~ꢀ0.02%).ꢀꢀꢀ
KhalifaꢀforꢀassistanceꢀwithꢀXPSꢀmeasurements.ꢀ
ꢀ
REFERENCES
ꢀ
ꢀꢀMechanistically,ꢀ weꢀ believeꢀ thatꢀ theꢀ DBA-Ni(0)ꢀ catalyticꢀ
(
1) Brunet, S.; Mey, D.; Pérot, G.; Bouchy, C.; Diehl, F. On the
systemꢀ proceedsꢀ throughꢀ aꢀ classicalꢀ Ni(0)/Ni(II)ꢀ catalyticꢀ
hydrodesulfurization of FCC gasoline: a review. App. Catalyst A:
Gen. 2005, 278, 143-172.
(2) Rentner, J. Kljajic, M.; Offner, L.; Breinbauer, R. Recent ad-
vances and applications of desulfurization in organic synthesis. Tetra-
hedron 2014, 70, 8983-9027.
30
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
pathway. ꢀ However,ꢀ DFTꢀ calculationsꢀ revealꢀ thatꢀ theꢀ arylꢀ
thioetherꢀ substratesꢀ doꢀ notꢀ bindꢀ toꢀ theꢀ centerꢀ ofꢀ theꢀ DBA-
Ni(0)ꢀcomplexꢀdueꢀtoꢀtheꢀNiꢀcenterꢀbeingꢀcoordinatelyꢀsatu-
ratedꢀwithꢀallꢀthreeꢀalkynylꢀunitsꢀ(FigureꢀS20,ꢀSI).ꢀAsꢀaꢀconse-
quenceꢀ theꢀDFTꢀcalculationsꢀ suggestꢀ thatꢀ theꢀNiꢀ hasꢀ toꢀ popꢀ
outꢀofꢀtheꢀDBA[12]ꢀcavityꢀandꢀbindꢀwithꢀonlyꢀoneꢀalkynylꢀunitꢀ
toꢀformꢀaꢀthree-coordinateꢀcomplexꢀbeforeꢀitꢀcanꢀoxidativelyꢀ
addꢀtheꢀC(aryl)-SMeꢀbond.ꢀThisꢀinitialꢀoxidativeꢀadditionꢀstepꢀ
isꢀ estimatedꢀ toꢀ beꢀ thermodynamicallyꢀ ~ꢀ 30ꢀ kcal/molꢀ uphill,ꢀ
butꢀ accessibleꢀ sinceꢀ theꢀ reactionꢀ isꢀ performedꢀ atꢀ highꢀ tem-
perature.ꢀ Afterwards,ꢀ σ-bondꢀ metathesisꢀ withꢀ di-
methylethylsilane,ꢀ followedꢀ byꢀ reductiveꢀ eliminationꢀ regen-
eratesꢀ theꢀ DBA-Ni(0)ꢀ complexꢀ (Figureꢀ S23,ꢀ SI).ꢀ Theꢀ σ-bondꢀ
metathesisꢀstepꢀisꢀsupportedꢀꢀꢀꢀꢀbyꢀtheꢀisolationꢀandꢀcharac-
terizationꢀ ofꢀ dimethylethyl(methylthio)silane,ꢀ whichꢀ isꢀ aꢀ
commonꢀ byproductꢀ fromꢀ thisꢀ particularꢀ σ-bondꢀ metathesisꢀ
reactionꢀ(FigureꢀS22,ꢀSI).ꢀꢀꢀ
(
3) Huang, H.; Li, J.; Lescop, C.; Duan, Z. Palladium-Catalyzed
Regioselective C-S Bond Cleavage of Thiophenes. Org. Lett. 2011,
1
3, 5252-5255.
(4) Shibue, M.; Hirotsu, M.; Nishioka, T.; Kinoshita, I. Ruthenium
and Rhodium Complexes with thiolate-Containing Pincer Ligands
Produced by C-S Bond Cleavage of Pyridyl-Substituted Dibenzothio-
phenes. Organometallics 2008, 27, 4475-4483.
(
5) Vicic, D. A.; Jones, W. D. Modeling the Hydrodesulfurzation
Reaction at Nickel. Unusual Reactivity of Dibenzothiophenes Rela-
tive to Thiophene and Benzothiophene. J. Am. Chem. Soc. 1999, 121,
7606-7617.
(
6) Barbero, N.; Martin, R. Ligand-Free Ni-Catalyzed Reductive
Cleavage of Inert Carbon-Sulfur Bonds. Org. Lett. 2012, 14, 796-799.
7) Mozingo, R.; Wolf, D. E.; Harris, S. A.; Folkers, K. Hydrogen-
(
olysis of Sulfur Compounds by Raney Nickel Catalyst. J. Am. Chem.
Soc. 1943, 65, 1013-1016.
(
8) Hendsbee, J. A.; Thring, R. W.; Dick, D. G. Raney Nickel for
ꢀ
ꢀꢀInꢀconclusion,ꢀweꢀhaveꢀdemonstratedꢀthatꢀaꢀDBA-COFꢀmeta-
the Desulphurization of FCC Gasoline. J. Can. Petrol. Technol. 2006,
latedꢀwithꢀNiꢀcanꢀbeꢀusedꢀtoꢀreductivelyꢀcleaveꢀinertꢀarylꢀC-Sꢀ
bonds.ꢀ Theꢀ Ni-DBA-2D-COFꢀ catalyticꢀ systemꢀ exhibitedꢀ greatꢀ
recyclabilityꢀandꢀprovidedꢀgoodꢀyields.ꢀThisꢀworkꢀhighlightsꢀaꢀ
rareꢀexampleꢀofꢀutilizingꢀaꢀNi-dopedꢀDBA-COFꢀasꢀaꢀplatformꢀ
forꢀ theꢀ desulfurizationꢀ ofꢀ organosulfurꢀ compounds.ꢀ Sinceꢀ
DBAsꢀcanꢀbeꢀdopedꢀwithꢀotherꢀearthꢀabundantꢀmetalsꢀ(i.e.ꢀFe,ꢀ
4
5, 47-50.
(9) Côté, A.P.; Benin, A.I; Ockwig, N.W; O’Keeffe, M.; Matzger,
A.J.; Yaghi, O. M. Science 2005, 310, 1166-1170.
(10) Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks:
a materials platform for structural and functional designs. Nat. Rev.
Mater. 2016, 1, 16068.
(11) Bisbey, R.P.; Dichtel, W. R. Covalent Organic Frameworks as
a Platform for Multidimensional Polymerization. ACS Cent. Sci.
31
Co,ꢀ etc.), ꢀ theꢀ proof-of-principleꢀ isꢀ importantꢀ asꢀ metalatedꢀ
DBA-COFsꢀcouldꢀalsoꢀbeꢀutilizedꢀtoꢀperformꢀmanyꢀotherꢀꢀsus-
tainableꢀcatalyticꢀtransformations.ꢀꢀꢀꢀꢀꢀꢀ
2
017, 3, 533-543.
12) Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane,
(
and Carbon Dioxide in Highly porous Covalent Organic Frameworks
for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875-
ꢀ
ASSOCIATEDꢀCONTENTꢀꢀ
8
883.
(13) Zeng, Y.; Zou, R.; Zhao, Y. Covalent Organic Frameworks for
CO Capture. Adv. Mater. 2016, 28, 2855-2873.
14) Chandra, S.; Kundu, T.; Kandambeth, S.; BabaRao, Y.;
Supporting Information
2
(
13
Syntheticꢀ procedures,ꢀ FT-IR,ꢀ solid-stateꢀ Cꢀ NMR,ꢀ XPS,ꢀ TGAꢀ
PXRD,ꢀandꢀSEM.ꢀThisꢀmaterialꢀisꢀavailableꢀfreeꢀofꢀchargeꢀviaꢀ
theꢀinternetꢀatꢀhttp://pubs.acs.org.ꢀꢀ
Marathe, S. M.; Kunjir, S. M.; Banerjee, R. Phosphoric Acid loaded
Azo(-N=N-) Based Covalent Organic Framework for Proton Conduc-
tion. J. Am. Chem. Soc. 2014, 136, 6570-6573.
(
15) Xu, H.; Tao, S.; Jiang, D. Proton conduction in crystalline and
porous covalent organic frameworks. Nat. Mater. 2016, 15, 722-726.
16) Ding, S.-Y.; Gao, J.; Wang, Q; Zhang, Y.; Song, W.-G.; Su,
ꢀ
TheꢀSupportingꢀInformationꢀisꢀavailableꢀfreeꢀofꢀchargeꢀonꢀtheꢀ
ACSꢀPublicationsꢀwebsite.ꢀ
(
C.-Y.; Wang, W. Construction of Covalent Organic Framework for
Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction.
J. Am. Chem. Soc. 2011, 133, 19816-19822.
AUTHOR INFORMATION
Corresponding Author
(
17) Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S; Yan, Y. 3D
Microporous Base-Functionalized Covalent Organic Frameworks for
Size-Selective Catalysis. Angew. Chem., Int. Ed. 2014, 53, 2878-
2882.
(18) Dogru, M.; Handloser, M.; Auras, F.; Kunz T.; Medina, D.;
Hartschuh, A.; Knochel, P; Bein T. A. A Photoconductive Thienothi-
ophene-Based Covalent Organic Framework Showing Charge Trans-
fer Towards Included Fullerene. Angew. Chem., Int. Ed. 2013, 52,
*
mcgrier.1@osu.eduꢀ
Notes
Theꢀauthorsꢀdeclareꢀnoꢀcompetingꢀfinancialꢀinterests.ꢀ
ACKNOWLEDGMENTS
2
920-2924.
P.L.MꢀacknowledgesꢀfinancialꢀsupportꢀfromꢀtheꢀNationalꢀSci-
enceꢀ Foundationꢀ (CHE-1856442).ꢀ Weꢀ thankꢀ Theꢀ Ohioꢀ Stateꢀ
ACS Paragon Plus Environment