Chem. Soc. Rev. 2012, 41, 8009. c) N. Agarwal, S. J.
Freakley, R. U. McVicker, S. M. Althahban, N.
Dimitratos, Q. He, D. J. Morgan, R. L Jenkins,. D. J.
Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings,
Science 2017, 358, 223.
3
4
.
.
H. Zhang, M. Jin, Y. Xia, Chem. Soc. Rev. 2012, 41,
8
035.
a) R. N. Dhital, C. Kamonsatikul, E. Somsook, K.
Bobuatong, M. Ehara, S. Karanjit, H. Sakurai, J. Am.
Chem. Soc. 2012, 134, 20250. b) R. N. Dhital, C.
Kamonsatikul, E. Somsook, H. Sakurai, Catal. Sci.
Technol. 2013, 3, 3030. c) J. Meeprasert, S. Namuangruk,
B. Boekfa, R. N. Dhital, H. Sakurai, M. Ehara,
Organometallics 2016, 35, 1192.
5
.
a) T. Hiyama, Organofluorine Compounds: Chemistry
and Applications (Springer, New York, 2000). b) J. L.
Kiplinger, T. G. Richmond, C. E. Osterberg, Chem. Rev.
Scheme 2. Possible Mechanism. Only the reactive site
is shown in the Pt Pd model.
1
1
994, 94, 373. c) H. Amii, K. Uneyama, Chem. Rev. 2009,
09, 2119. d) O. Eisenstein, J. Milani, R. N. Perutz, Chem.
7
6
Rev. 2017, 117, 8710. e) D. B. Vogt, C. P. Seath, H. Wang,
N. T. Jui. J. Am. Chem. Soc. 2019, 141, 13203. g) J.-D.
Hamel, J.-F. Paquin, Chem. Commun. 2018, 54, 10224.
6
7
.
.
K. Mu
̈l ler, C. Faeh, F. Diederich, Science 2007, 317,
1
881.
a) M. K. Whittlesey, E. Peris, ACS Catal. 2014, 4, 3152.
b) M. Aizenberg, D. Milstein, Science 1994, 265, 359. c)
C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W.
Stephan, Science 2013, 341, 1374. d) G. Meier, T. Braun,
Angew. Chem. Int. Ed. 2009, 48, 1546.
8
.
a) T. F. Beltrán, M. Feliz, R. Llusar, J. A. Mata, V. S.
Safont, Organometallics 2011, 30, 290. b) W. Zhao, J. Wu,
S. Cao, Adv. Synth. Catal. 2012, 354, 574. c) B. M. Kraft,
R. J. Lachicotte, W. D. Jones, J. Am. Chem. Soc. 2001,
123, 10973.
Figure 2. Calculated free energy profile (G) for the
activation of C-F bonds together with the schematic structures
of the intermediates. The optimized structures are shown only
9.
a) S. D. Pike, M. R. Crimmin, A. B. Chaplin, Chem.
Commun. 2017, 53, 3615. b) R. N. Perutz, Science 2008,
321, 1168. c) M. R. Crimmin, M. J. Butler, A. J. P. White,
Chem. Commun. 2015, 51, 15994. d) C. Douvris, O. V.
Ozerov, Science 2008, 321, 1188.
for the reactive site of the Pt
7 6
Pd model.
4
. Conclusion
In conclusion, we have demonstrated that Pt-Pd nanoalloy
exhibits superior catalytic activity for the activation of C-F
bonds at room temperature. The present reaction (C-F
activation by Pt-Pd) seems similar to our previously reported
C-Cl activation by Au-Pd, but the two reaction mechanisms are
10. a) C. J. E. Davies, M. J. Page, C. E. Ellul, M. F. Mahon,
M. K. Whittlesey, Chem. Commun. 2010, 46, 5151. b) M.
K. Cybulski, J. E. Nicholls, J. P. Lowe, M. F. Mahon, M.
K. Whittlesey, Organometallics 2017, 36, 2308. c) J. A.
Panetier, S. A. Macgregor, M. K. Whittlesey, Angew.
Chem. Int. Ed. 2011, 50, 2783. d) A. Nova, R.
Mas-Ballesté, A. Lledós, Organometallics 2012, 31, 1245.
e) V. H. Mai, G. I. Nikonov, ACS Catal. 2016, 6, 7956.
11. a) S. Sabater, J. A. Mata, E. Peris, Nat. Commun. 2013, 4,
2553. b) S. Sabater, J. A. Mata, E. Peris, Organometallics
2015, 34, 1186. c) Y. Sawama, Y. Yabe, M. Shigetsura, T.
Yamada, S. Nagata, Y. Fujiwara, T. Maegawa, Y.
Monguchi, H. Sajiki, Adv. Synth. Catal. 2012, 354, 777.
12. J. Li, T. Zheng, H. Sun, X Li, Dalton Trans. 2013, 42,
13048.
4
totally different. In the latter case, the catalytic center is Pd
and the major role of Au is to anchor the Pd centers onto the
bimetallic surface to avoid leaching (deactivation) processes, in
4
a,
addition to accelerate the migration process of the Cl atoms.
1
8
In contrast, in the current reaction, the C-F activation occurs
at the Pt sites, but this is only possible once the neighboring Pd
atoms are activated upon oxidative addition of 2-propanol,
which also provides the coupling partner “H” for the
exothermic reductive elimination. Therefore, Pt and Pd play
independent and cooperative roles to accomplish the effective
activation of C-F bonds.
13. S. Kuhl, R. Schneider, Y. Fort, Adv. Synth. Catal. 2003,
3
45, 341.
Acknowledgement
This work was supported by JST(ACT-C) project
14. a) J. J. Gair, R. L. Grey, S. Giroux,; M. A. Brodney, Org.
Lett. 2019, 21, 2482. b) N. O. Andrella, N. Xu, B. M.
Gabidullin, C. Ehm, R. T. Baker, J. Am. Chem. Soc. 2019,
(JPMJCR12YI) and JSPS KAKENHI (JP19K22187).
1
41, 11506.
1
5. a) A. Matsunami, S. Kuwata, Y. Kayaki, ACS Catal. 2016,
6, 5181. b) U. Jäger-Fiedler, M. Klahn,; P. Arndt, W.
Baumann, A. Spannenberg, V. V. Burlakov, U. Rosenthal,
J. Mol. Catal. A Chem. 2007, 261, 184. c) M. B. Khaled,
R. K. El Mokadem, J. D. Weaver III, J. Am. Chem. Soc.
2017, 139, 13092. d) M. K. Cybulski, D. Mckay, S. A.
References
1
.
R. Ferrando, J. Jellinek, R. L. Lohnston, Chem. Rev. 2008,
08, 845.
1
2
.
a) M. Chen, D. Kumar, C.-W. Yi, D. W. Goodman,
Science 2005, 310, 291. b) F. Gao, D. W. Goodman,