Copper-Catalyzed Cyanation of Aryl Iodides and Bromides
FULL PAPER
127.45 (C-5) 127.20 (C-3), 116.50 (C-2), 114.10 ppm (C-1); GC-MS (EI):
rt=15.19 min, m/z: 148; Rf =0.25 (hexanes/AcOEt, 75:25).
diethyl ether (~10 mL). The filtrate was washed twice with water
(~30 mLꢃ2). The combined aqueous phases were twice extracted with
diethyl ether (2ꢃ~30 mL). The organic layers were combined, dried over
MgSO4, filtered and concentrated in vacuo to yield a brown oil. Diisopro-
pylethylamine was then distilled and the crude product obtained was pu-
rified on silica gel (eluent: hexanes/ethyl acetate, 90:10) to provide
554 mg (95% yield) of the desired product as a colourless oil. 1H NMR:
d=7.60 (ddd, 3JH6,H7 =7.6 Hz, 4JH5,H7 =1.4 Hz, 5JH4,H7 =0.6 Hz, H-7), 7.50
Aryl nitrile (9 f): The cyanation of 4-bromotoluene (855.2 mg, 5.0 mmol)
was achieved by following the general procedure. The resulting crude
oily residue was purified by chromatography on silica gel (eluent: hex-
anes/ethyl acetate, 90:10) to provide 470 mg (80% yield) of the desired
product as a white solid. M.p. 27–288C (hexanes/AcOEt) (lit.:[43] 288C);
1H NMR: d=7.56 (m, H-3, H-7), 7.29 (m, H-4, H-6), 2.36 ppm (s, 3H, H-
8, CH3); 13C NMR: d=143.54 (C-5), 131.81 (C-3, C-7), 129.66 (C-4, C-6),
118.96 (C-1), 109.06 (C-2), 21.62 ppm (C-8); GC-MS (EI): rt=11.34 min,
m/z: 117; Rf =0.36 (hexanes/AcOEt, 90:10).
3
3
(td, JH4,H5
=
3JH5,H6 =7.6 Hz, 4JH5,H7 =1.4 Hz, H-5), 7.33 (ddd, JH4,H5
=
3
7.6 Hz, 4JH4,H6 =1.3 Hz, 4JH4,H7 =0.6 Hz, H-4), 7.28 (td, JH6,H7
=
3JH5,H6
=
7.6 Hz, 4JH4,H6 =1.3 Hz, H-6), 2.56 ppm (s, 3H, H-8, CH3); 13C NMR: d=
141.69 (C-3), 132.48 (C-5), 132.27 (C-7), 130.06 (C-4), 126.06 (C-6),
117.92 (C-1), 112.54 (C-2), 20.23 ppm (C-8); GC-MS (EI): rt=10.68 min,
m/z: 117; Rf =0.57 (hexanes/AcOEt, 90:10).
Aryl nitrile (9g): The cyanation of 4-acetylbromobenzene (995.3 mg,
5.0 mmol) was achieved by following the general procedure. The result-
ing crude oily residue was purified by chromatography on silica gel
(eluent: hexanes/ethyl acetate, 80:20) to provide 698 mg (96% yield) of
the desired product as a pale yellow solid. M.p. 57–588C (hexanes/
AcOEt) [lit.:[44] 58–598C (aqueous ethanol)]; 1H NMR: d=8.07 (m, H-4,
H-6), 7.80 (m, H-3, H-7), 2.67 ppm (s, 3H, H-9, CH3); 13C NMR: d=
196.48 (C-8), 139.82 (C-5), 132.42 (C-4, C-6), 128.61 (C-3, C-7), 117.83
(C-1), 116.28 (C-2), 26.67 ppm (C-9); GC-MS (EI): rt=15.13 min, m/z:
145; Rf =0.21 (hexanes/AcOEt, 80:20).
Acknowledgements
We thank RHODIA Organique Fine and the CNRS for a Ph.D. grant
and financial support. Prof. A. Fruchier is gratefully acknowledged for
helpful discussions and assistance with the NMR analyses.
Aryl nitrile (9h): The cyanation of 3-methoxybromobenzene (633 mL,
5.0 mmol) was achieved by following the general procedure. The result-
ing crude oily residue was purified by chromatography on silica gel
[1] R. C. Larock, Comprehensive Organic Transformations. A guide to
Functional Group Preparations, VCH, New York, 1989.
[2] a) W. Oppolzer, D. A. Roberts, Helv. Chim. Acta 1980, 63, 1703–
1705; b) M. H. Gebs, R. H. Abeles, J. Med. Chem. 1986, 29, 585–
589.
[3] M. Rehan, A. D. Schꢄlter, W. J. Feast, Synthesis 1988, 386–388.
[4] A. G. M. Barret, W. E. Broderick, B. M. Hoffmann, C. S. Velasquez,
J. Org. Chem. 1989, 54, 3233–3234.
[5] C. Tomlin, The Pesticide Manual, 10th ed., Crop Protection Publica-
tions, The Bitish Crop Protection Council & The Royal Society of
Chemistry, UK, 1994, pp. 160, 193, 241, 300, 374, 444, 482, 579, 598,
1045.
[6] A. Kleemann, J. Engel, B. Kutsher, D. Reichert, Pharmaceutical sub-
stances: Syntheses, Patents, Applications, 4th ed., Thieme, Stuttgart,
2001.
[7] G. P. Ellis, T. M. Romney-Alexander, Chem. Rev. 1987, 87, 779–794,
and references cited therein.
[8] a) L. Cassar, J. Organomet. Chem. 1973, 54, C57–C58; b) L. Cassar,
S. Ferrera, M. Foꢆ, Adv. Chem. Ser. 132, Homogeneous catalysis II
1974, 252–273; c) L. Cassar, M. Foꢆ, F. Montanari, G. P. Mainelli, J.
Organomet. Chem. 1979, 173.
[9] a) Y. Sakakibara, F. Okuda, A. Shimoyabashi, K. Kirino, M. Sakai,
N. Uchino, K. Takagi, Bull. Chem. Soc. Jpn. 1988, 61, 1985–1990;
b) Y. Sakakibara, Y. Ido, K. Sasaki, M. Sakai, N. Uchino, Bull.
Chem. Soc. Jpn. 1993, 66, 2776–2778.
[10] R. K. Arvela, N. E. Leadbeater, J. Org. Chem. 2003, 68, 9122–9125.
[11] M. Sundermeier, A. Zapf, M. Beller, Eur. J. Inorg. Chem. 2003,
3513–3526, and references therein.
[12] a) K. Takagi, T. Okamoto, Y. Sakakibara, S. Oka, Chem. Lett. 1973,
471–474; b) A. Sekiya, N. Ishikawa, Chem. Lett. 1975, 277–278;
c) K. Takagi, T. Okamoto, Y. Sakakibara, A. Ohno, S. Oka, N.
Hayama, Bull. Chem. Soc. Jpn. 1975, 48, 3298–3301; d) K. Takagi,
T. Okamoto, Y. Sakakibara, A. Ohno, S. Oka, N. Hayama, Bull.
Chem. Soc. Jpn. 1976, 49, 3177–3180; e) Y. Akita, M. Shimazaki, A.
Ohta, Synthesis 1981, 974; f) J. R. Dalton, S. L. Regen, J. Org.
Chem. 1979, 44, 4443–4444; g) K. Takagi, K. Sasaki, Y. Sakakibara,
Bull. Chem. Soc. Jpn. 1991, 64, 1118–1121; h) T. Okano, M. Iwa-
hara, J. Kiji, Synlett 1998, 243–244; i) B. A. Anderson, E. C. Bell,
F. O. Ginah, K. Harn, L. M. Pagh, J. P. Wepsiec, J. Org. Chem. 1998,
63, 8224–8228; j) M. Sundermeier, A. Zapf, M. Beller, J. Sans, Tetra-
hedron Lett. 2001, 42, 6707–6710; k) M. Sundermeier, A. Zapf, S.
Mutyala, W. Baumann, J. Sans, S. Weiss, M. Beller, Chem. Eur. J.
2003, 9, 1828–1836.
(eluent: hexanes/ethyl acetate, 90:10) to provide 524 mg (79% yield) of
3
the desired product as a colourless oil. 1H NMR:[45] d=7.38 (m, JH5,H6
=
8.4 Hz, 3JH6,H7 =7.6 Hz, 5JH3,H6 =0.7 Hz, H-6), 7.24 (m, 3JH6,H7 =7.6 Hz,
4
4JH3,H7 =1.4, 4JH5,H7 =1.0 Hz, H-7), 7.14 (m, 4JH3,H5 =2.6 Hz, JH3,H7
=
1.4 Hz, 5JH3,H6 =0.7 Hz, H-3), 7.14 (m, 3JH5,H6 =8.4 Hz, 4JH3,H5 =2.6 Hz,
4JH3,H7 =1.0 Hz, H-5), 3.83 ppm (s, 3H, H-9, CH3); 13C NMR: d=159.43
(C-4), 129.86 (C-6), 124.22 (C-7), 119.33 (C-5), 118.71 (C-1), 116.37 (C-3),
111.98 (C-2), 55.32 ppm (C-8); GC-MS (EI): rt=13.27 min, m/z: 133;
Rf =0.33 (hexanes/AcOEt, 90:10).
Aryl nitrile (9i): The cyanation of 3,5-difluorobromobenzene (576 mL,
5.0 mmol) was achieved by following the general procedure. The result-
ing crude oily residue was purified by chromatography on silica gel
(eluent: hexanes/ethyl acetate, 90:10) to provide 653 mg (94% yield) of
the desired product as white needles. M.p. 85–868C (hexanes/AcOEt)
[lit.:[45] 83–858C (hexanes)]; 1H NMR:[45] d=7.23 (m, 4JH3,H7 =8.5 Hz,
3JH,F =7.7 Hz, 4JH5,H3 =4JH5,H7 =2.3 Hz, 5JH,F =1.1 Hz, H-3, H-7), 7.12 ppm
(m, 3JH5,F4 =3JH5,F6 =8.7 Hz, 4JH5,H3 =4JH5,H7 =2.3 Hz, H-5); 13C NMR:[45]
4
d=162.83 (dd, 1JC,F =252.2 Hz, 3JC,F =12.6 Hz, C-4, C-6), 116.45 (t, JC,F
=
4
3.4 Hz, C-1), 115.61 (m, 2JC,F =20.3 Hz, JC,F =8.6 Hz, C-3, C-7), 114.30 (t,
2
3JC,F =11.6 Hz, C-2), 109.39 ppm (t, JC,F =24.9 Hz, C-5); 19F NMR:[45] d=
105.69 ppm (m, 3JH,F =8.7 Hz, 3JH,F =7.7 Hz, 4JF,F =1.3 Hz , 5JH,F =1.1 Hz,
F-4, F-6); GC-MS (EI): rt=7.16 min, m/z: 139; Rf =0.41 (hexanes/
AcOEt, 90:10).
Aryl nitrile (9k): The cyanation of 4-chlorobromobenzene (957.3 mg,
5.0 mmol) was achieved by following the general procedure. The result-
ing crude oily residue was purified by chromatography on silica gel
(eluent: hexanes/ethyl acetate, 90:10) to provide 588 mg (86% yield) of
the desired product as white needles. M.p. 91–928C (hexanes/AcOEt)
1
(lit.:[46] 948C); H NMR: d=7.64 (m, H-3, H-7), 7.50 ppm (m, H-4, H-6);
13C NMR: d=139.39 (C-5), 133.26 (C-3, C-7), 129.56 (C-4, C-6), 117.82
(C-1), 110.66 ppm (C-2); GC-MS (EI): rt=12.06 min, m/z: 137; Rf =0.43
(hexanes/AcOEt, 90:10).
Aryl nitrile (9j): After standard cycles of evacuation and back-filling with
dry and pure nitrogen, an oven-dried Radley tube (Carousel “reaction
stations RR98030”) equipped with a magnetic stirring bar was charged
with CuI (95.2 mg, 0.5 mmol) and 1,10-phenanthroline (181.2 mg,
1.0 mmol). The tube was evacuated and back-filled with nitrogen. 2-Iodo-
toluene (636 mL, 5.0 mmol), acetone cyanohydrin (502 mL, 5.5 mmol) and
diisopropylethylamine (1.05 mL, 6.0 mmol) were added under a stream
of nitrogen by syringe at room temperature, followed by anhydrous and
degassed DMF (3 mL). The tube was sealed under a positive pressure of
nitrogen, and stirred and heated at 1108C for 48 h. After cooling to room
temperature, the mixture was diluted with diethyl ether (~50 mL) and fil-
tered through a plug of Celite, the filter cake being further washed with
[13] a) D. M. Tschaen, R. Desmond, A. O. King, M. C. Fortin, B. Pipik,
S. King, T. R. Verhoeven, Synth. Commun. 1994, 24, 887–890; b) T.
Chem. Eur. J. 2005, 11, 2483 – 2492
ꢂ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2491