C O M M U N I C A T I O N S
Scheme 2 a
their direct Ru-catalyzed protodesilylation and cycloisomerization
to the corresponding azaheterocycles. This Ru-catalyzed conversion
of C6-trimethylsilyl 3-azadienynes to azaheterocycles, not only
reduces a three-step sequence4 to a single-step but also does not
require the isolation of sensitive and/or inaccessible terminal alkynyl
imines as substrates.
c
a
Reagents and conditions: a) Tf2O, 2-ClPyr, CH2Cl2; TMSCtCCu,
THF, -78f0 °C. b) 5, SPhos, NH4PF6, toluene, 105 °C. c) K2CO3, MeOH.
d) 5, toluene, 105 °C.
Acknowledgment. M.M. is a Dale F. and Betty Ann Frey
Damon Runyon Scholar supported by the Damon Runyon Cancer
Research Foundation (DRS-39-04). M.M. is a Firmenich Assistant
Professor of Chemistry. We acknowledge ACS-PRF (40631G1),
NSF (547905), Amgen Inc., and MIT for funding.
Scheme 3
Supporting Information Available: Experimental procedures and
spectroscopic data for all products. This material is available free of
charge via the Internet at http://pubs.acs.org.
3
experiments confirm that PPh outcompetes SPhos in displacement
of COD from 6, providing complex 5 and remaining SPhosssimilar
to the optimal precatalyst mixture. Also, H NMR monitoring of
the cycloisomerization reaction of azadienyne 3a, employing
complex 6 and SPhos alone, revealed the formation of the inactive
complex.17
6 6 5 6
CpRu(η -C H Me)PF
The optimal reaction conditions proved to be compatible with a
variety of C-silyl alkynyl imines (Table 1). In particular, we found
even highly sensitive N-vinyl/heterocyclic imines to be excellent
substrates (Table 1, entries 9-16), providing a convergent and
versatile azaheterocycle synthesis. Importantly, the direct conversion
of C-silyl alkynyl imines 3 to the corresponding azaheterocycles 1
with this Ru-catalyst system avoids the isolation of the more
sensitive terminal alkynyl imines (i.e., Table 1, entry 4). In only
two cases (entries 7 and 16) in situ desilylation was found to be
exceedingly slow, prompting the use of the corresponding terminal
alkyne derivatives as the substrates for cycloisomerization. In the
synthesis of the acid-sensitive N-triisopropylsilylazaindole (entry
References
1
(1) For recent reviews, see: (a) Henry, G. D. Tetrahedron 2004, 60, 6043.
(
b) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. (c) Abass, M.
Heterocycles 2005, 65, 901.
(
2) (a) Jones, G. In ComprehensiVe Heterocyclic Chemistry II; Katritzky, A.
R., Rees, C. W., Scriven, E. F. V., McKillop, A., Eds; Pergamon: Oxford,
1
996; Vol. 5; p 167. (b) Larock, R. C. ComprehensiVe Organic
Transformations: A Guide to Functional Group Preparations; Wiley-
VCH: New York, 1999.
(
3) For reviews on metal-catalyzed heterocycle synthesis, see: (a) B o¨ nnemann,
H.; Brijoux, W. AdV. Heterocycl. Chem. 1990, 48, 177. (b) Nakamura, I.;
Yamamoto, Y. Chem. ReV. 2004, 104, 2127. (c) Zeni G.; Larock, R. C.
Chem. ReV. 2004, 104, 2285. (d) Varela, J. A.; Sa a´ , C. Chem. ReV. 2004,
104, 3787.
(4) For related recent metal-catalyzed azaheterocycle syntheses, see: (a)
Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553, (b) Varela, J. A.;
Castedo, L.; Sa a´ , C. J. Org. Chem. 2003, 68, 8595, (c) Sangu, K.; Fuchibe,
K.; Akiyama, T. Org. Lett. 2004, 6, 353, (d) Zhang, X.; Campo, M. A.;
Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763, (e) McCormick, M. M.;
Duong, H. A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030 and
references therein.
(
5) (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (b)
Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p 1051.
(
c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004, 248,
16), lowering the catalyst loading (5 mol %) from our standard
2337. (d) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973.
conditions was beneficial.
(
6) For related reviews, see: (a) Bruneau, C.; Dixneuf, P. H. Acc. Chem.
Res. 1999, 32, 311. (b) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem.
ReV. 2001, 101, 2067. (c) Nevado, C.; Echavarren, A. M. Synthesis 2005,
Subjecting the alkynyl imine 3a-d
5
(eq 1) to our standard
conditions gave the quinoline 1a-d
5
(eq 1) with C4-deuterium
167. For related representative reports, see: (d) Trost, B. M.; Dyker, G.;
Kulawiec, R. J. J. Am. Chem. Soc. 1990, 112, 7809. (e) Wang, Y.; Finn,
M. G. J. Am. Chem. Soc. 1995, 117, 8045. (f) Merlic, C. A.; Pauly, M. E.
J. Am. Chem. Soc. 1996, 118, 11319. (g) Ohe, K.; Kojima, M.; Yonehara,
K.; Uemura, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1823. (h) Maeyama,
K.; Iwasawa, N. J. Am. Chem. Soc. 1998, 120, 1928.
(
7) (a) Boger, D. L. J. Heterocycl. Chem. 1998, 35, 1003. (b) Jayakumar, S.;
Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58, 379.
incorporation (68%).10 The use of terminal alkynyl imine 4a-d
, without NH PF ) as substrate provided quinoline 1a-d (eq 1)
with C3-deuterium incorporation (72%). Furthermore, employing
ammonium hexafluorophospate-d in the cycloisomerization of
alkynyl imine 3a (eq 1), provided the quinoline 1a-d (eq 1) with
C3-deuterium incorporation (68%).10 The protodesilylated imine
a (Scheme 2) was not detected as a persistent intermediate by
TLC or H NMR monitoring experiments (Table 1, entry 1), and
the silyl alkynyl imine 3a was recovered unchanged from the
reaction mixture in the absence of Ru-complex 5. Additionally, only
a trace amount of the desired desilylated and cycloisomerized
product was detected when the ammonium hexafluorophosphate
was omitted, returning the starting material as the mass balance.
These observations suggest the direct conversion of the silyl alkynyl
imine 3a to the C-silyl metal vinylidene18 7 (Scheme 3) followed
by protodesilylation and cycloisomerization to give 1a.
(eq
(8) For reports on the synthesis of alkynyl imines via a two-step procedure
1
involving imidoyl chlorides, see: (a) Ried, W.; Erle, H.-E. Chem. Ber.
1
4
6
1
1979, 112, 640. (b) Austin, W. B.; Bilow, N.; Kelleghan, W. J.; Lau, K.
10
S. Y. J. Org. Chem. 1981, 46, 2280. (c) Lin, S.-Y.; Sheng, H.-Y.; Huang,
Y.-Z. Synthesis 1991, 235. For related reports, see: (d) Kel’in, A. V.;
Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074. (e)
Van den Hoven, B. G.; Alper, H. J. Am. Chem. Soc. 2001, 123, 10214.
(9) (a) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron
4
1
2000, 56, 3077. (b) Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79,
4
1694.
1
(10) See the Supporting Information for details.
(
11) Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J.
Am. Chem. Soc. 1997, 119, 6072.
(
12) (a) Gilbert, J. D.; Wilkinson, G. J. Chem. Soc. (A) 1969, 1749. (b)
Blackmore, T.; Bruce, M. I.; Stone, F. G. A. J. Chem. Soc. (A) 1971,
2376. (c) Bruce, M. I.; Windsor, N. J. Aust. J. Chem. 1977, 30, 1601.
(
13) (a) For a related report on metal-catalyzed isomerization of N-aryl
benzamide derived terminal alkynes (i.e., 4a) using W(CO)
‚THF (20-
00 mol %) to afford 2-arylquinolines after treatment with NMO, see ref
5
1
4c. (b) For a report on Ru-catalyzed C2-vinylation of pyridines, see:
Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720.
14) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2004, 43, 1871.
(
(
15) Albers, M. O.; Robinson, D. J.; Shaver, A.; Singleton, E. Organometallics
The chemistry described here provides a two-step process for
the synthesis of substituted pyridine derivatives from readily
available N-vinyl/-aryl amides (Scheme 2, steps a and b). Note-
worthy features of this chemistry include the single-step conversion
of a wide range of readily available amides, including sensitive
N-vinyl amides, to the corresponding C-silyl alkynyl imines and
1986, 5, 2199.
(16) For related discussions on the steric and electronic effects of phosphines
used with complex 6 in Ru-vinylidene formation, see: Trost, B. M.;
Rhee, Y. H. J. Am. Chem. Soc. 1999, 121, 11680.
(17) McNair, A. M.; Schrenk, J. L.; Mann, K. R. Inorg. Chem. 1984, 23, 2633.
18) Schneider, D.; Werner, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 700.
(
JA060626A
J. AM. CHEM. SOC.
9
VOL. 128, NO. 14, 2006 4593