E.-Y. Chuang et al. / Journal of Controlled Release 169 (2013) 296–305
305
[20] K. Sonaje, K.J. Lin, S.P. Wey, C.K. Lin, T.H. Yeh, H.N. Nguyen, C.W. Hsu, T.C. Yen, J.H.
Juang, H.W. Sung, Biodistribution, pharmacodynamics and pharmacokinetics of
insulin analogues in a rat model: oral delivery using pH-Responsive nanoparticles
vs. subcutaneous injection, Biomaterials 31 (2010) 6849–6858.
[21] H.N. Nguyen, S.P. Wey, J.H. Juang, K. Sonaje, Y.C. Ho, E.Y. Chuang, C.W. Hsu, T.C.
Yen, K.J. Lin, H.W. Sung, The glucose-lowering potential of exendin-4 orally deliv-
ered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin se-
cretion in vivo, Biomaterials 32 (2011) 2673–2682.
Acknowledgments
This work was supported by a grant from the National Science
Council (NSC 100-2120-M-007-003), Taiwan, Republic of China. The
molecular-imaging study was partially supported by a grant from
Chang Gung Memorial Hospital (CMRPG391512).
[22] S. Sajeesh, K. Bouchemal, V. Marsaud, C. Vauthier, C.P. Sharma, Cyclodextrin
complexed insulin encapsulated hydrogel microparticles: an oral delivery system
for insulin, J. Control. Release 147 (2010) 377–384.
[23] P.H. Johnson, D. Frank, H.R. Costantino, Discovery of tight junction modulators:
significance for drug development and delivery, Drug Discov. Today 13 (2008)
261–267.
[24] A. Bernkop-Schnurch, The use of inhibitory agents to overcome the enzymatic
barrier to perorally administered therapeutic peptides and proteins, J. Control.
Release 52 (1998) 1–16.
[25] C.K. Schauer, O.P. Anderson, Calcium-selective ligands. 2. Structural and spec-
troscopic studies on calcium and cadmium complexes of EGTA4-[H4EGTA=
3,12-bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioic acid], J. Am.
Chem. Soc. 109 (1987) 3646–3656.
[26] M. Naraghi, T-jump study of calcium binding kinetics of calcium chelators, Cell
Calcium 22 (1997) 255–268.
[27] A. Bernkop-Schnurch, Chitosan and its derivatives: potential excipients for per-
oral peptide delivery systems, Int. J. Pharm. 194 (2000) 1–13.
[28] E. Permyakov, K. Murakami, L. Berliner, On experimental artifacts in the use of
metal ion chelators for the determination of the cation binding constants of
alpha-lactalbumin. A reply, J. Biol. Chem. 262 (1987) 3196–3198.
[29] T. Matsukawa, S. Ikeda, H. Imai, M. Yamada, Alleviation of the two-cell block of
ICR mouse embryos by polyaminocarboxylate metal chelators, Reproduction
124 (2002) 65–71.
[30] R.Y. Tsien, New calcium indicators and buffers with high selectivity against mag-
nesium and protons: design, synthesis, and properties of prototype structures,
Biochemistry 19 (1980) 2396–2404.
[31] T. Yamagata, M. Morishita, N.J. Kavimandan, K. Nakamura, Y. Fukuoka, K.
Takayama, N.A. Peppas, Characterization of insulin protection properties of com-
plexation hydrogels in gastric and intestinal enzyme fluids, J. Control. Release 112
(2006) 343–349.
[32] F. Madsen, N.A. Peppas, Complexation graft copolymer networks: swelling prop-
erties, calcium binding and proteolytic enzyme inhibition, Biomaterials 20 (1999)
1701–1708.
[33] M. Morishita, T. Goto, K. Nakamura, A.M. Lowman, K. Takayama, N.A. Peppas,
Novel oral insulin delivery systems based on complexation polymer hydrogels:
single and multiple administration studies in type 1 and 2 diabetic rats, J. Control.
Release 110 (2006) 587–594.
References
[1] C. Damge, P. Maincent, N. Ubrich, Oral delivery of insulin associated to polymeric
nanoparticles in diabetic rats, J. Control. Release 117 (2007) 163–170.
[2] F.Y. Su, K.J. Lin, K. Sonaje, S.P. Wey, T.C. Yen, Y.C. Ho, N. Panda, E.Y. Chuang, B. Maiti,
H.W. Sung, Protease inhibition and absorption enhancement by functional
nanoparticles for effective oral insulin delivery, Biomaterials 33 (2012) 2801–2811.
[3] T.H. Yeh, L.W. Hsu, M.T. Tseng, P.L. Lee, K. Sonjae, Y.C. Ho, H.W. Sung, Mechanism
and consequence of chitosan-mediated reversible epithelial tight junction open-
ing, Biomaterials 32 (2011) 6164–6173.
[4] L. Shen, H.Y. Zhao, J. Du, F. Wang, Anti-tumor activities of four chelating agents
against human neuroblastoma cells, In Vivo 19 (2005) 233–236.
[5] M. Morishita, T. Goto, N.A. Peppas, J.I. Joseph, M.C. Torjman, C. Munsick, K.
Nakamura, T. Yamagata, K. Takayama, A.M. Lowman, Mucosal insulin delivery
systems based on complexation polymer hydrogels: effect of particle size on in-
sulin enteral absorption, J. Control. Release 97 (2004) 115–124.
[6] F.C. Wu, M. Laskowski, The effect of calcium on chymotrypsins [alpha] and B,
Biochim. Biophys. Acta 19 (1956) 110–115.
[7] R.J. Schilling, A.K. Mitra, Degradation of insulin by trypsin and alpha-chymotrypsin,
Pharm. Res. 8 (1991) 721–727.
[8] C.C. Kim, S. Falkow, Delineation of upstream signaling events in the salmonella path-
ogenicity island 2 transcriptional activation pathway, J. Bacteriol. 186 (2004)
4694–4704.
[9] L. Tei, Z. Baranyai, M. Botta, L. Piscopo, S. Aime, G.B. Giovenzana, Synthesis and so-
lution thermodynamic study of rigidified and functionalised EGTA derivatives,
Org. Biomol. Chem. 6 (2008) 2361–2368.
[10] A. Bernkop-Schnurch, C. Paikl, C. Valenta, Novel bioadhesive chitosan–EDTA con-
jugate protects leucine enkephalin from degradation by aminopeptidase N,
Pharm. Res. 14 (1997) 917–922.
[11] Z.X. Liao, S.F. Peng, Y.C. Ho, F.L. Mi, B. Maiti, H.W. Sung, Mechanistic study of
transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic
acid), Biomaterials 33 (2012) 3306–3315.
[12] C. Leypold, M. Reiher, G. Brehm, M. Schmitt, S. Schneider, P. Matousek, M. Towrie,
Tetracycline and derivatives—assignment of IR and Raman spectra via DFT calcu-
lations, Phys. Chem. Chem. Phys. 5 (2003) 1149–1157.
[13] X. Wang, Aspirin-like drugs cause gastrointestinal injuries by metallic cation che-
lation, Med. Hypotheses 50 (1998) 227–238.
[14] M. Cassidy, C. Tidball, Calcium and magnesium contents of gastrointestinal tissues
in six species, Am. J. Physiol. 217 (1969) 674–679.
[34] J. Lee, Intraluminal distension pressure on intestinal lymph flow, serosal transu-
dation and fluid transport in the rat, J. Physiol. 355 (1984) 399–409.
[35] R.C. Brown, T.P. Davis, Calcium modulation of adherens and tight junction func-
tion, Stroke 33 (2002) 1706–1711.
[15] Y.H. Lin, K. Sonaje, K.M. Lin, J.H. Juang, F.L. Mi, H.W. Yang, H.W. Sung,
Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for
oral delivery of protein drugs, J. Control. Release 132 (2008) 141–149.
[16] K. Sonaje, Y.J. Chen, H.L. Chen, S.P. Wey, J.H. Juang, H.N. Nguyen, C.W. Hsu, K.J.
Lin, H.W. Sung, Enteric-coated capsules filled with freeze-dried chitosan/poly
([gamma]-glutamic acid) nanoparticles for oral insulin delivery, Biomaterials
31 (2010) 3384–3394.
[17] A.N. Flynn, O.A. Itani, T.O. Moninger, M.J. Welsh, Acute regulation of tight junction
ion selectivity in human airway epithelia, Proc. Natl. Acad. Sci. U. S. A. 106 (2009)
3591.
[18] K. Sonaje, K.J. Lin, M.T. Tseng, S.P. Wey, F.Y. Su, E.Y. Chuang, C.W. Hsu, C.T. Chen,
H.W. Sung, Effects of chitosan-nanoparticle-mediated tight junction opening on
the oral absorption of endotoxins, Biomaterials 32 (2011) 8712–8721.
[19] Y. Zhang, J.R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, C.T. Lim, Electrospun
biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue
engineering, Biomaterials 29 (2008) 4314–4322.
[36] E. Roger, F. Lagarce, E. Garcion, J.P. Benoit, Lipid nanocarriers improve paclitaxel
transport throughout human intestinal epithelial cells by using vesicle-mediated
transcytosis, J. Control. Release 140 (2009) 174–181.
[37] X. Zhao, L. Yin, J. Ding, C. Tang, S. Gu, C. Yin, Y. Mao, Thiolated trimethyl chitosan
nanocomplexes as gene carriers with high in vitro and in vivo transfection effi-
ciency, J. Control. Release 144 (2010) 46–54.
[38] R. Vogelmann, W.J. Nelson, Fractionation of the epithelial apical junctional complex:
reassessment of protein distributions in different substructures, Mol. Biol. Cell 16
(2005) 701–716.
[39] P. Pulimeno, C. Bauer, J. Stutz, S. Citi, PLEKHA7 is an adherens junction protein
with a tissue distribution and subcellular localization distinct from ZO-1 and
E-cadherin, PLoS One 5 (2010) e12207.
[40] A.I. Ivanov, A. Nusrat, C.A. Parkos, Endocytosis of epithelial apical junctional proteins
by a clathrin-mediated pathway into a unique storage compartment, Mol. Biol. Cell
15 (2004) 176–188.