C O M M U N I C A T I O N S
Table 2. Deprotonative Cupration of Functionalized Aromaticsa
coupling biphenyl product 4ePh in 91% yield. Interestingly, the
deprotonation of 2e by homoleptic amidocuprate (TMP)
Li 1f followed by oxidation with PhNO gave the homocoupling
product 5e in quantitative yield.
2
Cu(CN)-
2
2
In summary, highly chemo- and regioselective deprotonative
cupration of functionalized aromatic and heteroaromatic compounds
was realized using newly developed Lipshutz-type TMP-Cu-ate
bases. In all cases, an amido ligand on the Cu-ates reacts first to
deprotonate the aromatic ring. This contrasts with the C-C bond-
forming reactions noted in the case of organoamidocuprates. Such
a result clearly indicates that the transfer aptitude of ligands on the
Cu-ates changes according to the reaction pattern. Functionalized
phenyl cuprate intermediates react with various electrophiles as aryl
anions with no additional catalyst. Furthermore, in the oxidation
-
of the [Ar-Cu(I)-R] intermediates, three types of reaction could
a
Deprotonative cupration was carried out using MeCu(TMP)(CN)Li2
be made to occur selectively on the aromatic ring by appropriately
changing the oxidants and cuprate bases, that is, the introduction
of an OH group, cross-coupling, and homocoupling. Further studies
to establish the scope and limitations of this directed ortho cupration
(
2.0 equiv) and substrate (1.0 equiv) in THF. b Isolated yield.
Chart 1. A Survey of the Electrophilic Trapping of Functionalized
Arylcuprate 3e
(DoC) reaction are underway, together with a mechanistic and
structural investigation of this novel metalation and the successive
oxidation.
Acknowledgment. We gratefully acknowledge financial support
from Hoansha (to M.U.), KAKENHI (Yong Scientist (A), Houga,
and Priority Area Nos. 452 and 459) (to M.U.), a JSPS Research
Fellowship for Young Scientists (to S.U.), and also the UK EPSRC
(
J.V.M). The calculations were performed by using the RIKEN
RSCC facility.
Supporting Information Available: Experimental procedures and
characterizations. This material is available free of charge via the
Internet at http://pubs.acs.org.
References
Table 3. Oxidation of Functionalized Phenyl Cuprate Intermediates
(
(
(
1) (a) Posner, G. H. Org. React. 1972, 19, 1-113. (b) Modern Organocopper
Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002.
2) For a recent example, see: Davies, R. P.; Hornauer, S.; Hitchcock, P. B.
Angew. Chem., Int. Ed. 2007, 46, 5191-5194.
3) (a) Rossiter, B. E.; Swingle, N. M. Chem. ReV. 1992, 92, 771-806. (b)
Krause, N.; Gerold, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 187-204.
(c) Dieter, R. K. In Modern Organocopper Chemistry; Krause, N., Ed.;
Wiley-VCH: Weinheim, Germany, 2002; pp 79-144.
4) For a recent example, see: Bertz, S. H.; Ogle, C. A.; Rastogi, A. J. Am.
Chem. Soc. 2005, 127, 1372-1373.
(
(
5) Yamanaka, M.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 4697-4706.
6) Review: Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew.
Chem., Int. Ed. 2007, 46, 3802-3824.
(
(
7) (a) Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc.
1
981, 103, 7672-7674. (b) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski,
Having established a general preparative method for function-
alized aromatic copper compounds, we next demonstrated that the
J. A. Tetrahedron 1984, 40, 5005-5038. (c) Lipshutz, B. H.; Kozlowski,
J. A.; Wilhelm, R. S. J. Org. Chem. 1984, 49, 3943-3949. (d) Lipshutz,
B. H. Synthesis 1987, 325-341. (e) Lipshutz, B. H.; Sharma, S.; Ellsworth,
E. L. J. Am. Chem. Soc. 1990, 112, 4032-4034.
(
typical) functionalized arylcopper intermediate 3e can be utilized
as an aryl anion equivalent (Chart 1). Intermediate 3e, generated
from 2e using 1g, was treated with D O to give the corresponding
(
8) (a) Kondo, Y.; Shiai, M.; Uchiyama, M.; Sakamoto, T. J. Am. Chem.
Soc. 1999, 121, 3539-3540. (b) Uchiyama, M.; Miyoshi, T.; Kajihara,
Y.; Sakamoto, T.; Otani, Y.; Ohwada, T.; Kondo, Y. J. Am. Chem. Soc.
2
2002, 124, 8514-8515. (c) Uchiyama, M.; Matsumoto, Y.; Nobuto, D.;
ortho-deuterated product in a quantitative yield. Intermediate 3e
also undergoes C-C and C-Si bond-forming reactions, such as
methylation, allylation, benzoylation, and trimethylsilylation, in high
yields and with high chemo- and regioselectivities, without the
requirement for any cocatalyst. This contrasts with the documented
need for a copper or palladium catalyst to achieve comparable
Furuyama, T.; Yamaguchi, K.; Morokuma, K. J. Am. Chem. Soc. 2006,
128, 8748-8750. (d) Uchiyama, M.; Matsumoto, Y.; Usui, S.; Hashimoto,
Y.; Morokuma, K. Angew. Chem., Int. Ed. 2007, 46, 926-929. (e)
Uchiyama, M.; Kobayashi, Y.; Furuyama, T.; Nakamura, S.; Kajihara,
Y.; Miyoshi, T.; Sakamoto, T.; Kondo, Y.; Morokuma, K. J. Am. Chem.
Soc. 2007, 129, in press.
(
9) (a) Uchiyama, M.; Naka, H.; Matsumoto, Y.; Ohwada, T. J. Am. Chem.
Soc. 2004, 126, 10526-10527. (b) Naka, H.; Uchiyama, M.; Matsumoto,
Y.; Wheatley, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am.
Chem. Soc. 2007, 129, 1921-1930.
8
9
chemistry using arylzinc or arylaluminum intermediates.
Finally, we examined the oxidation of intermediary aryl-Cu(I)-
(
10) (a) Kondo, Y.; Matsudaira, T.; Sato, J.; Murata, N.; Sakamoto, T. Angew.
Chem., Int. Ed. Engl. 1996, 35, 736-738. (b) Piazza, C.; Knochel, P.
Angew. Chem., Int. Ed. 2002, 41, 3263-3265.
11
ates with various oxidants (Table 3). When intermediate 3e was
exposed to molecular oxygen in the presence of 1.0 equiv of CuCN,
the corresponding phenol was obtained in 56% yield, realizing the
regioselective introduction of an OH group.12 On the other hand,
(
11) For an excellent review on the oxidation of organocuprates, see: Surry,
D. S.; Spring, D. R. Chem. Soc. ReV. 2006, 35, 218-225.
(12) For recent advances in meta-substituted phenol synthesis, see:
(a)
Maleczka, R. E., Jr.; Shi, F.; Holmes, D.; Smith, M. R., III. J. Am. Chem.
Soc. 2003, 125, 7792-7793. (b) Ishiyama, T.; Takagi, J.; Ishida, K.;
Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002,
when PhNO
reaction of 3e proceeded smoothly and selectively to give ortho-
methylated product 4eMe. The use of PhCu(TMP)(CN)Li 1j instead
of 1g for the deprotonative cupration of 2e gave the desired cross-
2 2
was used in place of O , the oxidative ligand coupling
1
24, 390-391. However, the introduction of an OH group at the ortho
2
position with respect to various functional groups is still challenging.
JA074669I
J. AM. CHEM. SOC.
9
VOL. 129, NO. 49, 2007 15103