Organic Letters
Letter
(
10) For a review on denitrogenative transannulation of triazoles, see:
ACKNOWLEDGMENTS
■
(
a) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51,
Financial support from the National Natural Science Founda-
tion (21772046) and the Natural Science Foundation of Fujian
Province (2016J01064) is gratefully acknowledged. We also
thank the Instrumental Analysis Center of Huaqiao University
for analysis support.
8
1
62. (b) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52,
371. (c) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.
(d) Jiang, Y.; Sun, R.; Tang, X.-Y.; Shi, M. Chem. - Eur. J. 2016, 22,
17910.
(11) For some selected examples on denitrogenative transannulation
of triazoles, see: (a) Ma, X.; Pan, S.; Wang, H.; Chen, W. Org. Lett.
2
014, 16, 4554. (b) Yadagiri, D.; Chaitanya, M.; Reddy, A. C. S.;
REFERENCES
■
Anbarasan, P. Org. Lett. 2018, 20, 3762. (c) Pal, K.; Sontakke, G. S.;
Volla, C. M. R. Org. Lett. 2019, 21, 3716. (d) Nakamura, I.; Nemoto, T.;
Shiraiwa, N.; Terada, M. Org. Lett. 2009, 11, 1055. (e) Battula, S.;
Kumar, A.; Gupta, A. P.; Ahmed, Q. N. Org. Lett. 2015, 17, 5562. (f) Su,
Y.; Petersen, J. L.; Gregg, T. L.; Shi, X. Org. Lett. 2015, 17, 1208.
(g) Teders, M.; Pitzer, L.; Buss, S.; Glorius, F. ACS Catal. 2017, 7, 4053.
(h) Yin, Z.; Wang, Z.; Wu, X.-F. Org. Lett. 2017, 19, 6232. (i) Wang, Y.;
Li, Y.; Fan, Y.; Wang, Z.; Tang, Y. Chem. Commun. 2017, 53, 11873.
(
1
1) (a) Chen, P. H.; Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53,
674. (b) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 10733.
c) Ko, H. M.; Dong, G. Nat. Chem. 2014, 6, 739. (d) Xu, T.; Savage, N.
(
A.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1891. (e) Xia, Y.; Lu, G.;
Liu, P.; Dong, G. Nature 2016, 539, 546. (f) Yada, A.; Okajima, S.;
Murakami, M. J. Am. Chem. Soc. 2015, 137, 8708. (g) Deng, L.; Jin, L.;
Dong, G. Angew. Chem., Int. Ed. 2018, 57, 2702. (h) For a review on
cut-and-sew”, see: Chen, P.-H.; Billett, B. A.; Tsukamoto, T.; Dong, G.
ACS Catal. 2017, 7, 1340.
2) Some examples for “extrude-and-sew” transformations: (a) Zhou,
X.; Ko, H. M.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 13867.
b) Zeng, P.; Chen, P. H.; Dong, G. ACS Catal. 2016, 6, 969.
c) Nakamura, I.; Nemoto, T.; Shiraiwa, N.; Terada, M. Org. Lett. 2009,
1, 1055. (d) Joshi, A.; Chandra Mohan, D.; Adimurthy, S. Org. Lett.
016, 18, 464. (e) Kurandina, D.; Gevorgyan, V. Org. Lett. 2016, 18,
804. (f) Wei, Y.; Lu, L.-Q.; Li, T.-R.; Feng, B.; Wang, Q.; Xiao, W.-J.;
Alper, H. Angew. Chem., Int. Ed. 2016, 55, 2200. (g) Li, M.-M.; Wei, Y.;
Liu, J.; Chen, H.-W.; Lu, L.-Q.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139,
4707.
3) (a) Pinto, E.; Queiroz, M.-J. R. P.; Vale-Silva, L. A.; Oliveira, J. F.;
Begouin, A.; Begouin, J.-M.; Kirsch, G. Bioorg. Med. Chem. 2008, 16,
172. (b) Romagnoli, R.; Baraldi, P. G.; Kimatrai Salvador, M.; Preti,
(
1
j) Zhang, P.-C.; Han, J.; Zhang, J. Angew. Chem., Int. Ed. 2019, 58,
1444.
12) For some examples on denitrogenative transannulation of
“
(
(
benzotriazinones, see: (a) Miura, T.; Yamauchi, M.; Murakami, M. Org.
Lett. 2008, 10, 3085. (b) Yamauchi, M.; Morimoto, M.; Miura, T.;
Murakami, M. J. Am. Chem. Soc. 2010, 132, 54. (c) Miura, T.;
Morimoto, M.; Yamauchi, M.; Murakami, M. J. Org. Chem. 2010, 75,
(
(
1
2
1
5
359. (d) Miura, T.; Yamauchi, M.; Kosaka, A.; Murakami, M. Angew.
Chem., Int. Ed. 2010, 49, 4955. (e) Miura, T.; Nishida, Y.; Morimoto,
M.; Yamauchi, M.; Murakami, M. Org. Lett. 2011, 13, 1429. (f) Fang,
Z.-J.; Zheng, S.-C.; Guo, Z.; Guo, J.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem.,
Int. Ed. 2015, 54, 9528. (g) Wang, H.; Yu, S. Org. Lett. 2015, 17, 4272.
1
(
(
h) Thorat, V. H.; Upadhyay, N. S.; Murakami, M.; Cheng, C. H. Adv.
Synth. Catal. 2018, 360, 284. (i) Hari Balakrishnan, M.; Sathriyan, K.;
Mannathan, S. Org. Lett. 2018, 20, 3815.
8
(
13) For some examples on denitrogenative transannulation of
D.; Aghazadeh Tabrizi, M.; Bassetto, M.; Brancale, A.; Hamel, E.;
Castagliuolo, I.; Bortolozzi, R.; Basso, G.; Viola, G. J. Med. Chem. 2013,
6, 2606.
tetrazoles, see: (a) Nakamuro, T.; Hagiwara, K.; Miura, T.; Murakami,
M. Angew. Chem., Int. Ed. 2018, 57, 5497. (b) Das, S. K.; Roy, S.;
Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429.
5
(
4) (a) Smith, A.; DeMorin, F.; Paras, N.; Huang, Q.; Petkus, K.;
(
c) Roy, S.; Khatua, H.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int.
Ed. 2019, 58, 11439.
14) (a) Zhou, Y.; Wang, Y.; Lou, Y.; Song, Q. Org. Lett. 2018, 20,
494. (b) Zhou, Y.; Song, Q. Org. Chem. Front. 2018, 5, 3245. (c) Zhou,
Doherty, E.; Nixey, T.; Kim, J.; Whittington, D.; Epstein, L.; Lee, M.;
Rose, M.; Babij, C.; Fernando, M.; Hess, K.; Le, Q.; Beltran, P.;
Carnahan, J. J. Med. Chem. 2009, 52, 6189. (b) Yang, S.; Van, H.; Le, T.;
Khadka, D.; Cho, S.; Lee, K.; Chung, H.; Lee, S.; Ahn, C.; Lee, Y.; Cho,
W. Bioorg. Med. Chem. Lett. 2010, 20, 5277.
5) (a) Cho, W.-j.; Min, S. Y.; Le, T. N.; Kim, T. S. Bioorg. Med. Chem.
Lett. 2003, 13, 4451. Some selected examples for the synthesis of 1-
aminoisoquinolines: (b) Wei, X.; Zhao, M.; Du, Z.; Li, X. Org. Lett.
(
6
Y.; Deng, S.; Mai, S.; Song, Q. Org. Lett. 2018, 20, 6161. (d) Kong, W.;
Zhou, Y.; Song, Q. Adv. Synth. Catal. 2018, 360, 1943. (e) Zhou, Y.;
(
2
011, 13, 4636. (c) Zheng, D.; Chen, Z.; Liu, J.; Wu, J. Org. Biomol.
Chem. 2011, 9, 4763. (d) Jayakumar, J.; Parthasarathy, K.; Chen, Y.-H.;
Lee, T.-H.; Chuang, S.-C.; Cheng, C.-H. Angew. Chem., Int. Ed. 2014,
(
15) Queiroz, M.-J. R. P.; Begouin, A.; Ferreira, I. C. F. R.; Kirsch, G.;
Calhelha, R. C.; Barbosa, S.; Estevinho, L. M. Eur. J. Org. Chem. 2004,
004, 3679.
16) (a) Wang, J.; Liu, C.; Yuan, J.; Lei, A. Angew. Chem., Int. Ed. 2013,
2, 2256. (b) Liu, X.; Zhou, Y.; Song, Q. Chem. Commun. 2019, 55,
943.
5
3, 9889. (e) Li, J.; Tang, M.; Zang, L.; Zhang, X.; Zhang, Z.;
2
(
5
8
Ackermann, L. Org. Lett. 2016, 18, 2742. (f) Li, J.; Zhang, Z.; Tang, M.;
Zhang, X.; Jin, J. Org. Lett. 2016, 18, 3898. (g) Yu, X.; Chen, K.; Yang,
F.; Zha, S.; Zhu, J. Org. Lett. 2016, 18, 5412. (h) Muralirajan, K.;
Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358,
7
74. (i) Feng, J.; Wu, X. Adv. Synth. Catal. 2016, 358, 2179. (j) Kaishap,
P.; Duarah, G.; Chetia, D.; Gogoi, S. Org. Biomol. Chem. 2017, 15, 3491.
k) Yang, F.; Yu, J.; Liu, Y.; Zhu, J. Org. Lett. 2017, 19, 2885. (l) Yang,
(
X.; Yu, H.; Xu, Y.; Shao, L. J. Org. Chem. 2018, 83, 9682. (m) Zuo, Y.;
He, X.; Ning, Y.; Wu, Y.; Shang, Y. J. Org. Chem. 2018, 83, 13463.
(
n) Bao, W.; Wang, J.; Xu, X.; Zhang, B.; Liu, W.; Lei, L.; Liang, H.;
Zhang, K.; Wang, S. Chem. Commun. 2018, 54, 8194.
6) Romeo, G.; Salerno, L.; Pittala, V.; Modica, M. N.; Siracusa, M. A.;
(
Materia, L.; Buccioni, M.; Marucci, G.; Minneman, K. P. Eur. J. Med.
Chem. 2014, 83, 419.
(
7) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int.
Ed. 2007, 46, 4757.
8) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.;
(
Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (b) Chuprakov, S.;
Kwok, S. W.; Fokin, V. V. J. Am. Chem. Soc. 2013, 135, 4652.
(
9) Miura, T.; Yamauchi, M.; Murakami, M. Chem. Commun. 2009,
1
470.
E
Org. Lett. XXXX, XXX, XXX−XXX