Communication
ChemComm
6 D. Miles, T. Burrow, A. Lough and D. Foucher, J. Inorg. Organomet. 26 M. Trummer, T. Nauser, M.-L. Lechner, F. Uhlig and W. Caseri,
Polym. Mater., 2010, 20, 544–553. Polym. Degrad. Stab., 2011, 96, 1841–1846.
7 M. Trummer, D. Solenthaler, P. Smith and W. Caseri, RSC Adv., 27 High molecular weight polystannanes 6 and 7 containing alternat-
2011, 1, 823–833.
ing alkyl (n-Bu, or Me) and Ph substituents attached to tin centers in
the backbone display ready solubility (420 mg mLÀ1) in common
organic solvents (DCM, toluene, THF, C6H6). This is in contrast to
an earlier report of poly(diphenylstannane) which is effectively
insoluble in organic solvents even at low molecular weights
(B7000 Da). See V. Lu and T. D. Tilley, Macromolecules, 1996, 29,
5763–5764.
8 M. Trummer, J. Zemp, C. Sax, P. Smith and W. Caseri, J. Organomet.
Chem., 2011, 696, 3041–3049.
9 T. Imori and T. D. Tilley, J. Chem. Soc., Chem. Commun., 1993,
1607–1609.
10 T. Imori, V. Lu, H. Cai and T. D. Tilley, J. Am. Chem. Soc., 1995, 117,
9931–9940.
11 T. D. Tilley and T. Imori, High molecular weight polystannanes by 28 W. H. Carothers, Trans. Faraday Soc., 1936, 32, 39–49.
metal catalysed dehydropolymerization, US Pat., 5488091A, 1996.
12 J. R. Babcock and L. R. Sita, J. Am. Chem. Soc., 1996, 118,
12481–12482.
29 M. Trummer, D. Solenthaler, P. Smith and W. Caseri, RSC Adv.,
2011, 1, 823–833.
¨
30 S. Adams and M. Drager, Angew. Chem., Int. Ed. Engl., 1987, 26, 1255–1256.
¨
31 S. Adams and M. Drager, Main Group Met. Chem., 1988, 11, 151–180.
13 V. Lu and T. D. Tilley, Macromolecules, 1996, 29, 5763–5764.
14 H.-G. Woo, J.-M. Park, S.-J. Song, S.-Y. Yang, I.-S. Kim and W.-G. 32 M. Herberhold, U. Steffl, W. Milius and B. Wrackmeyer, Angew.
Kim, Bull. Korean Chem. Soc., 1997, 18, 1291–1295.
15 V. Y. Lu and T. D. Tilley, Macromolecules, 2000, 33, 2403–2412.
16 N. R. Neale and T. D. Tilley, Tetrahedron, 2004, 60, 7247–7260.
17 S. M. Thompson and U. Schubert, Inorg. Chim. Acta, 2004, 357,
1959–1964.
18 F. Choffat, P. Smith and W. Caseri, J. Mater. Chem., 2005, 15,
1789–1792.
Chem., Int. Ed. Engl., 1996, 35, 1803–1804.
33 S. Dobson, P. D. Howe and P. Floyd, Mono-and disubstituted methyltin,
butyltin and octyltin compounds, World Health Organization (WHO),
34 The hydrostannolysis reaction leading to the formation of a Sn–Sn
bond from the reaction of tin hydrides with tin amides was first
described and the kinetics and mechanism investigated in detail by
H. M. J. C. Creamers, F. Verbeek and J. G. Noltes, J. Organomet.
Chem., 1967, 8, 469–477 who proposed the reaction proceeds by an
electrophilic hydrostannolysis of the tin(IV)–amide bond from the
reaction with tin(IV) hydride. They also conclusively ruled out a
radical mechanism by carrying out reactions in the presence of
radical traps in which no radical products were observed. The
authors of this study suggest the formation of the Sn–Sn bond
proceeds by either an SE2 (solvent assisted) or SF2 (four center)
mechanism.
¨
19 F. Choffat, S. Kaser, P. Wolfer, D. Schmid, R. Mezzenga, P. Smith
and W. Caseri, Macromolecules, 2007, 40, 7878–7889.
20 F. Choffat, P. Smith and W. Caseri, Adv. Mater., 2008, 20, 2225–2229.
21 J. Beckmann, A. Duthie, M. Grossman and A. Semisch, Organo-
metallics, 2008, 27, 1495–1500.
22 F. Choffat, Y. Buchmu¨ller, C. Mensing, P. Smith and W. Caseri,
J. Inorg. Organomet. Polym. Mater., 2009, 19, 166–175.
23 A. Khan, R. A. Gossage and D. A. Foucher, Can. J. Chem., 2010, 88,
1046–1052.
24 F. Choffat, P. Wolfer, P. Smith and W. Caseri, Macromol Mater. Eng., 35 M. Trummer, F. Choffat, P. Smith and W. Caseri, Macromol. Rapid.
2010, 295, 210–221. Commun., 2012, 33, 448–460.
25 M. Trummer, D. Solenthaler, P. Smith and W. Caseri, RSC Adv., 36 J. Ward, S. Al-Alul, S. Harrypersad and D. A. Foucher, Can. J. Chem.,
2011, 1, 823–833.
2014, 92, 525–532.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 7120--7123 | 7123