10.1002/anie.202010846
Angewandte Chemie International Edition
COMMUNICATION
granted access to the HPC resources of CINES under the
allocation 2020-A0070810977 made by GENCI.
Keywords: halofunctionalization • hexafluoroisopropanol • DFT
computations • unactivated alkenes • heterocycles
[1]
For selected reviews on halofunctionalization of olefins, see: a) A.
Castellanos, S. P. Fletcher, Chem. Eur. J. 2011, 17, 5766-5776; b) G. Li,
S. R. S. S. Kotti, C. Timmons, Eur. J. Org. Chem. 2007, 2745-2758; c) U.
Hennecke, Chem. Asian J. 2012, 7, 456-465; d) S. E. Denmark, W. E.
Kuester, M. T. Burk, Angew. Chem. 2012, 124, 11098-11113; Angew.
Chem. Int. 2012, 51, 10938-10953; e) C. K. Tan, Y.-Y. Yeung, Chem.
Commun. 2013, 49, 7985-7996; f) S. R. Chemler, M. T. Bovino, ACS
Catal. 2013, 3, 1076-1091; g) K. Murai, H. Fujioka, Heterocycles 2013,
87, 763-805; h) J. Chen, L. Zhou, Synthesis 2014, 46, 586-595; i) Y. A.
Cheng, W. Z. Yu, Y.-Y. Yeung, Org. Biomol. Chem. 2014, 12, 2333-2343;
j) P. Mizar, T. Wirth, Synthesis 2017, 49, 981-986; k) Y. Cai, X. Liu, P.
Zhou, X. Feng, J. Org. Chem. 2019, 84, 1-13; l) A. C. A. D’Hollander, L.
Peilleron, T. D. Grayfer, K. Cariou, Synthesis 2019, 51, 1753-1769.
a) D. O. Hagan, Nat. Prod. Rep. 2000, 17, 435-446; b) E. Vitaku, D. T.
Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-10274.
[2]
[3]
For recent representative examples of haloamidation of olefins, see: a)
Z.-G. Chen, J.-F. Wei, M.-Z. Wang, L.-Y. Zhou, C.-J. Zhang, X.-Y. Shi,
Adv. Synth. Catal. 2009, 351, 2358-2368; b) D. Huang, H. Wang, F. Xue,
H. Guan, L. Li, X. Peng, Y. Shi, Org. Lett. 2011, 13, 6350-6353; c) K.
Moriyama, Y. Izumisawa, H. Togo, J. Org. Chem. 2011, 76, 7249-7255;
d) M. C. Bovino, S. R. Chemler, Angew. Chem. 2012, 124, 3989-3993;
Angew. Chem. Int. Ed. 2012, 51, 3923-3927; e) A. Alix, C. Lalli, P.
Retailleau, G. Masson, J. Am. Chem. Soc. 2012, 134, 10389-10392; f)
W. Kong, P. Feige, T. de Haro, C. Nevado, Angew. Chem. 2013, 125,
2529-2533; Angew. Chem. Int. Ed. 2013, 52, 2469-2473; g) F. Chen, C.
K. Tan, Y.-Y. Yeung, J. Am. Chem. Soc. 2013, 135, 1232-1235; h) L.
Song, S. Luo, J.-P. Cheng, Org. Lett. 2013, 15, 5702-5705; i) D. Huang,
X. Liu, L. Li, Y. Cai, W. Liu, Y. Shi, J. Am. Chem. Soc. 2013, 135, 8101-
8104; j) W. Xie, G. Jiang, H. Liu, J. Hu, X. Pan, H. Zhang, X. Wan, Y. Lai,
D. Ma, Angew. Chem. 2013, 125, 13162-13165; Angew. Chem. Int. Ed.
2013, 52, 12924-12927; k) L. Zhou, D. W. Tay, J. Chen, G. Y. C. Leung,
Y.-Y. Yeung, Chem. Commun. 2013, 49, 4412-4414; l) G.-Q. Liu, Y.-M.
Li, J. Org. Chem. 2014, 79, 10094-10109; m) H. Huang, H. Pan, Y. Cai,
M. Liu, H. Tian, Y. Shi, Org. Biomol. Chem. 2015, 13, 3566-3570; n) Y.
A. Cheng, W. Z. Yu, Y.-Y. Yeung, Angew. Chem. 2015, 127, 12270-
12274; Angew. Chem. Int. Ed. 2015, 54, 12102-12106; o) M. Daniel, F.
Blanchard, S. Nocquet-Thibault, K. Cariou, R. H. Dodd, J. Org. Chem.
2015, 80, 10624-10633; p) H. Pan, H. Huang, W. Liu, H. Tian, Y. Shi,
Org. Lett. 2016, 18, 896-899; q) L. Song, S. Luo, J.-P. Cheng, Org. Chem.
Front. 2016, 3, 447-452; r) H.-J. Jiang, K. Liu, J. Yu, L. Zhang, L.-Z. Gong,
Angew. Chem. 2017, 129, 12093-12097; Angew. Chem. Int. Ed. 2017,
56, 11931-11935; s) W. Z. Yu, Y. A. Cheng, M. W. Wong, Y.-Y. Yeung,
Adv. Synth. Catal. 2017, 359, 234-239; t) S.-N. Yu, Y.-L. Li, J. Deng, Adv.
Synth. Catal. 2017, 359, 2499-2508; u) K. M. Mennie, S. M. Banik, E. C,
Reichert, E. N. Jacobsen, J. Am. Chem. Soc. 2018, 140, 4797-4802; v)
Y. Lu, H. Nakatsuji, Y. Okumara, L. Yao, K. Ishihara, J. Am. Chem. Soc.
2018, 140, 6039-6043; w) J. Wu, H. Abou-Hamdan, R. Guillot, C.
Kouklovsky, G. Vincent, Chem. Commun. 2020, 56, 1713-1720.
a) F. E. Michael, P. A. Sibbald, B. M. Cochran, Org. Lett. 2008, 10, 793-
796; b) L. Zhou, J. Chen, C. K. Tan, Y.-Y. Yeung, J. Am. Chem. Soc.
2011, 133, 9164-9167; c) O. Lozano, G. Blessley, T. Martinez del Campo,
A. L. Thompson, G. T. Giuffredi, M. Bettati, M. Walker, R. Borman, V.
Gouverneur, Angew. Chem. 2011, 123, 8255-8259; Angew. Chem. Int.
Ed. 2011, 50, 8105-8109; d) T. Wu, J. Cheng, P. Chen, G. Liu, Chem.
Commun. 2013, 49, 8707-8709; e) G.-Q. Liu, Z.-Y. Ding, L. Zhang, T.-T.
Li, L. Li, L. Duan, Y.-M. Li, Adv. Synth. Catal. 2014, 356, 2303-2310; f)
P. Mizar, A. Burrelli, E. Günther, M. Söftje, U. Farooq, T. Wirth, Chem.
Eur. J. 2014, 20, 13113-13116; g) J. D. Griffin, C. L. Cavanaugh, D. A.
Nicewicz, Angew. Chem. 2017, 129, 2129-2132; Angew. Chem. Int. Ed.
2017, 56, 2097-2100. For a seminal study with iodine, see: h) Y. Tamaru,
S.-i. Kawamura, T. Bando, K. Tanaka, M. Hojo, Z.-i. Yoshida, J. Org.
Chem. 1988, 53, 5491-5101.
Scheme 7. Free energy profile (G233, kcal/mol) of the bromo-cyclization of N-
tosylaminoalkene A without HFIP or in the presence of a 3-unit HFIP cluster.
reaction is to facilitate the ionization of the N-Br bond of NBS,
notably by stabilizing the resulting succinimidate, and trigger a
cationic cyclization. What is true for NBS might also be true for
the N-bromination of substrates, whose formation may quench
the C-bromination process. Of course, in solution, more HFIP
molecules can be involved but our computations reveal, at least
qualitatively, a positive effect of the formation of a H-bonded NBS
rather than a free NBS in triggering a nucleophile-assisted alkene
bromination.
Conclusion
In summary, we have developed
a
broadly applicable
haloamidation of unactivated alkenes to provide a convenient
route to pyrrolidine and piperidine derivatives, as well as -
lactones. This transformation was efficiently and rapidly promoted
by HFIP as an additive under mild conditions and exhibits a
remarkable functional group tolerance, whether at the nitrogen or
alkene moiety. A key feature of this study is also our in-depth
investigations of the mechanism, including the role played by
HFIP, which was carried-out by means of DFT computations. In
contrast with previous reports, which suggested either the
formation of a haliranium or a N-bromoamide intermediate, our
investigations lean towards an activation of the alkene assisted
by a nitrogen nucleophile in order to trigger the cyclization, which
is in agreement with previous reports on halolactonization.
Further applications of this approach are underway in our
laboratory, including its extension to chlorofunctionalizations.
[4]
Acknowledgements
We gratefully thank the China Scholarship Council (CSC),
the CNRS, the Université Paris-Saclay and the Ecole
Polytechnique for the support of this work. This work was
[5]
For reviews on HFIP, see: a) J.-P. Bégué, D. Bonnet-Delpon, B. Crousse,
Synlett 2004, 18-29; b) I. A. Shuklov, N. V. Dubrovina, A. Börner,
Synthesis 2007, 2925-2943; c) T. Sugiishi, M. Matsugi, H. Hamamoto, H.
Amii, RSC Adv. 2015, 5, 17269-17282; d) J. Wencel-Delord, F. Colobert,
6
This article is protected by copyright. All rights reserved.