Aerobic Oxidation of Amines
FULL PAPER
used without further purification. Solvents were technical grade and dis-
tilled before use. The amines used were either commercially available or
prepared by standard procedures. Spectral data for imines 17,[38] 20, 22,
23, 24, 25, 32, 33,[31] and 34, 35[39] were in accordance with those previous-
ly reported.
[1] a) Modern Oxidation Methods (Ed.: J.-E. Bꢁckvall), Wiley-VCH,
Weinheim, 2004; b) Industrial Organic Chemicals: Starting Materials
and Intermediates, an Ullmanꢃs Encyclopaedia, Wiley-VCH, Wein-
heim, 1999.
[2] R. A. Sheldon, J. K. Kochi, Metal Catalyzed Oxidations of Organic
Compounds, Academic Press, New York, 1981.
Reference samples imines 18, 19, 21, and 26 were prepared according to
reference [31].
[3] a) J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, 5th ed. W. H.
Freeman, New York, 2002; b) B. Meunier, S. P. de Visser, S. Shaik,
Chem. Rev. 2004, 104, 3947; c) D. V. Deubel, J. Am. Chem. Soc.
2004, 126, 996.
[4] a) J.-E. Bꢁckvall, R. B. Hopkins, H. Grennberg, M. Mader, A. K.
Awasthi, J. Am. Chem. Soc. 1990, 112, 5160; b) J. Wçltinger, J.-E.
Bꢁckvall, A. Zsigmond, Chem. Eur. J. 1999, 5, 1460.
[5] a) H. Grennberg, K. Bergstad, J.-E. Bꢁckvall, J. Mol. Catal. A 1996,
113, 355; b) T. Yokota, S. Fujibayashi, Y. Nishiyama, S. Sakaguchi,
Y. Ishii, J. Mol. Catal. A 1996, 114, 113.
[6] a) J.-E. Bꢁckvall, R. L. Chowdhury, U. Karlsson, J. Chem. Soc.
Chem. Commun. 1991, 473; b) G.-Z. Wang, U. Andreasson, J.-E.
Bꢁckvall, J. Chem. Soc. Chem. Commun. 1994, 1037; c) G. Csjernyik,
A. H. ꢀll, L. Fadini, B. Pugin, J.-E. Bꢁckvall, J. Org. Chem. 2002, 67,
1657.
[7] a) K. Bergstad, S. Y. Jonsson, J.-E. Bꢁckvall, J. Am. Chem. Soc.
1999, 121, 10424; b) S. Y. Jonsson, K. Fꢁrnegꢄrdh, J.-E. Bꢁckvall, J.
Am. Chem. Soc. 2001, 123, 1365; c) S. Y. Jonsson, H. Adolfsson, J.-
E. Bꢁckvall, Chem. Eur. J. 2003, 9, 2783; d) A. Closson, M. Johans-
son, J.-E. Bꢁckvall, Chem. Commun. 2004, 1494.
[8] a) S. E. Bystrçm, E. M. Larsson, B. ꢅkermark, J. Org. Chem. 1990,
55, 5674; b) T. Yokota, Y. Sakurai, S. Sakaguchi, Y. Ishii, Tetrahe-
dron Lett. 1997, 38, 3923; c) A. Hanyu, E. Takezawa, S. Sakaguchi,
Y. Ishii, Tetrahedron Lett. 1998, 39, 5557.
[9] For aerobic oxidation of alcohols involving formal coupled electron
transfer see: a) I. E. Markꢆ, P. R. Giles, M. Tsukazaki, S. M. Brown,
C. J. Urch, Science 1996, 274, 2044; b) I. E. Markꢆ, P. R. Giles, M.
Tsukazaki, I. Chellꢇ-Regnaut, A. Gautier, S. M. Brown, C. J. Urch,
J. Org. Chem. 1999, 64, 2433.
N-(2,4,6-trimethylphenyl)-(1-phenylethylidene)amine
(18):
1H NMR
(400 Hz, CDCl3, 258C): d=8.02–8.05 (m, 2H), 7.45–7.50 (m, 3H), 6.89 (s,
2H), 2.30 (s, 3H), 2.08 (s, 3H), 2.00 ppm (s, 6H); 13C NMR (100 Hz,
CDCl3, 258C): d=165.6, 146.6, 139.5, 132.9, 130.3, 128.7, 128.5, 127.2,
125.7, 20.9, 18.1, 17.6 ppm.
N-(2-methylphenyl)-(1-phenylethylidene)amine (19): 1H NMR (400 Hz,
CDCl3, 258C): d=8.02–8.05 (m, 2H), 7.46–7.50 (m, 3H), 7.18–7.24 (m,
2H), 7.01–7.05 (m, 1H), 6.67–6.69 (m, 1H), 2.19 (s, 3H), 2.13 ppm (s,
3H); 13C NMR (100 Hz, CDCl3, 258C): d=165.1, 150.5, 139.6, 130.6,
130.5, 128.5, 127.3, 126.5, 123.4, 118.6 17.9, 17.6 ppm.
N-(4-methoxyphenyl)-(1-phenylethylidene)amine (21): 1H NMR (400 Hz,
CDCl3, 258C): d=7.95–7.97 (m, 2H), 7.43–7.45 (m, 3H), 6.90–6.92 (m,
2H), 6.74–6.77 (m, 2H), 3.82 (s, 3H), 2.25 ppm (s, 3H); 13C NMR
(100 Hz, CDCl3, 258C): d=165.1, 156.1, 152.1, 140.0, 130.5, 128.5, 127.3,
120.9, 114.4, 55.7, 17.5 ppm.
1
N-(4-methoxyphenyl)-[1-(4-cyanophenyl)ethylidene]amine (26): H NMR
(400 Hz, CDCl3, 258C): d=8.05–8.08 (m, 2H), 7.72–7.75 (m, 2H), 6.91–
6.94 (m, 2H), 6.74–6.77 (m, 2H), 3.83 (s, 3H), 2.28 ppm (s, 3H);
13C NMR (100 Hz, CDCl3, 258C): d 164.1, 156.7, 144.1, 143.8, 132.4,
127.9, 120.9, 118.8, 114.5, 113.9, 55.7, 17.5 ppm.
General procedure for ruthenium-catalyzed dehydrogenation of amines
with a stoichiometric amount of 2a: Ruthenium complex 3 (2.7 mg,
2.5 mmol, 2 mol%) and dry quinone 2a (31.5 mg, 0.2 mmol, 1.5 equiv)
were dissolved under an argon atmosphere in toluene (1 mL) in a round-
bottomed flask equipped with a condenser and a stirring bar. Amine
(0.125 mmol) was added and the reaction mixture was heated to 1108C.
The reaction course was monitored by 1H NMR spectroscopy. The prod-
uct was characterized by comparison with an authentic sample.
General procedure for the ruthenium-catalyzed aerobic oxidation of
amines: Ruthenium complex 3 (4.2 mg, 2.5 m mol, 2 mol%), quinone 2a
(4.2 mg, 25 m mol, 20 mol%), and cobalt complex 27 (1 mg, 2.5 mmol,
2 mol%) were charged into a 5-mL round-bottomed flask under an
argon atmosphere. The amine (1 mL, 0.125m in toluene, 0.125 mmol) was
added to this mixture followed by flushing with air for about 1 min. A
stream of air was allowed to pass through the system, and the mixture
was heated to 1108C in an oil bath (reaction times are given in
Table 3).[40] When the reaction was complete, the mixture was cooled to
room temperature and analyzed by 1H NMR spectroscopy. The product
was characterized by comparison with an authentic sample.
[10] A. Dijksman, A. Marino-Gonzꢈlez, A. Mairata i Payeras, I. W. C. E.
Arends, R. A. Sheldon, J. Am. Chem. Soc. 2001, 123, 6826.
[11] M. B. Choudary, S. N. Chowdari, S. Madhi, M. L. Kantam, Angew.
Chem. 2001, 113, 4755; Angew. Chem. Int. Ed. 2001, 40, 4619.
[12] O. Pꢉmies, A. H. ꢀll, J. S. M. Samec, N. Hermanns, J.-E. Bꢁckvall,
Tetrahedron Lett. 2002, 43, 4699.
[13] N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1996, 118, 4916.
[14] A. Cꢆrdova, Acc. Chem. Res. 2004, 37, 102.
[15] a) R. M. Williams, J. A. Hendrix, Chem. Rev. 1992, 92, 889; b) S. -I.
Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am. Chem. Soc. 2003,
125, 15312.
[16] W. J. III. Drury, D. Ferraris, C. Cox, B. Young, T. Lectka, J. Am.
Chem. Soc. 1998, 120, 11006.
[2,3,4,5-Ph4(h5-C4CO)Ru(CO)2N(CH3)(CH(4-MeO-Ph)(CH3))][2,3,4,5-
Ph4(h5-C4COH)Ru(CO)2H] (37): Complex
1 (30 mg, 0.03 mmol) was
weighed into an NMR tube, and CD2Cl2 (0.5 mL) was added under an
argon atmosphere. The sample was cooled to À788C, 36 (0.03 mmol,
0.3m, 0.1 mL) was added, then the sample was shaken carefully and in-
serted into the NMR spectrometer pre-cooled to À208C. Full conversion
to 37 was observed. 1H NMR (400 Hz, CD2Cl2, À208C): d=À15.17 (s,
1H; RuH), 0.79 (s, 3H; NMe), 0.96 (brd, J=6.4 Hz, 3H; CCH3), 2.47
(br, 1H; CH), 3.78 (s, 3H; OCH3), 6.80–7.26 (m, 44H; Ar), 8.91 (brs,
1H; NH), 9.56 ppm (brs, 1H; NH); 1H NMR (400 Hz, CD2Cl2, 258C):
d=À16.27 (brs, 1H; RuH), 1.07 (brd, J=7.3 Hz, 3H; CCH3), 1.24 (s,
3H; NMe), 2.92 (brq, 1H; CH), 3.80 (s, 3H; OCH3), 6.85–7.26 ppm (m,
44H; Ar).
[17] J. S. Sandhu, B. Sain, Heterocycles 1987, 26, 777.
[18] a) M. Shi, Y.-M. Xu, Angew. Chem. 2002, 114, 4689; Angew. Chem.
Int. Ed. 2002, 41, 4507; b) D. Balan, H. Adolfsson, J. Org. Chem.
2002, 67, 2329; c) D. Balan, H. Adolfsson, J. Org. Chem. 2001, 66,
6498.
[19] K. Hattori, H. Yamamoto, J. Org. Chem. 1992, 57, 3264.
[20] C. Anthony, Biochem. J. 1996, 320, 697.
[21] Apart from those reported in references [22—27] a few noncatalytic
methods are known. See for example: K. C. Nicolaou, C. J. N. Ma-
thiason, T. Montagnon, Angew. Chem. 2003, 115, 4111; Angew.
Chem. Int. Ed. 2003, 42, 4077, and references therein.
[22] a) S.-I. Murahashi, T. Naota, H. Taki, J. Chem. Soc. Chem.
Commun. 1985, 613; b) S. -I. Murahashi in Transition Metals for Or-
ganic Synthesis, Vol. 2 (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 2004, p. 497;
Acknowledgements
[23] A . J. Bailey, B. R. James, Chem. Commun. 1996, 2343.
[24] For an example of ruthenium-catalyzed aerobic oxidative cyanation
see reference [15b].
This work was supported by grants from the Swedish Research Council.
Professor Charles P. Casey is gratefully acknowledged for helping us with
the structure of compound 37.
Chem. Eur. J. 2005, 11, 2327 – 2334
ꢂ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2333