M.R. Cline et al. / Journal of Inorganic Biochemistry 118 (2013) 148–154
153
5
4
3
2
1
0
Table 4
(a)
Oxidation of NOHA and hydroxylamine by MPO.
Substrate
MPO (nM)
% HNOa
NOHA
NH2OH
NOHA
NH2OH
15
15
75
75
2
21
8
m/z = 44
m/z = 30
73
a
Substrates (100 μM) were incubated with MPO and H2O2 (500 μM) at 37 °C in
0.1 M PBS (containing 143 mM Cl−), pH 7.4. HNO yields are reported relative to the
standard HNO donor, Angeli's salt, as determined by N2O headspace analysis (SEM
5%; n≥3).
Disclosures
0
400
800
1200
1600
Time (s)
J.P.T. is a co-founder, stockholder, and serves on the Scientific
Advisory Board of Cardioxyl Pharmaceuticals.
6
5
4
3
2
1
0
(b)
Acknowledgment
We gratefully acknowledge the National Science Foundation
(CHE-1213438) for the generous support of this research. We also
thank Professor Howard Fairbrother, Samantha Rosenberg, and Michael
Barclay of the Johns Hopkins Chemistry Department for their assistance
and valuable advice.
m/z = 44
m/z = 30
References
[1] N. Paolocci, W.F. Saavedra, K.M. Miranda, C. Martignani, T. Isoda, J.M. Hare, M.G.
Espey, J.M. Fukuto, M. Feelisch, D.A. Wink, D.A. Kass, Proc. Natl. Acad. Sci. U. S. A.
98 (2001) 10463–10468.
0
400
800
1200
1600
[2] N. Paolocci, T. Katori, H.C. Champion, J.M.E. St, K.M. Miranda, J.M. Fukuto, D.A.
Wink, D.A. Kass, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 5537–5542.
[3] N. Paolocci, M.I. Jackson, B.E. Lopez, K. Miranda, C.G. Tocchetti, D.A. Wink, A.J.
Hobbs, J.M. Fukuto, Pharmacol. Ther. 113 (2007) 442–458.
[4] C.G. Tocchetti, W. Wang, J.P. Froehlich, S. Huke, M.A. Aon, G.M. Wilson, G. Di
Benedetto, B. O'Rourke, W.D. Gao, D.A. Wink, J.P. Toscano, M. Zaccolo, D.M. Bers,
H.H. Valdivia, H. Cheng, D.A. Kass, N. Paolocci, Circ. Res. 100 (2007) 96–104.
[5] J.P. Froehlich, J.E. Mahaney, G. Keceli, C.M. Pavlos, R. Goldstein, A.J. Redwood, C.
Sumbilla, D.I. Lee, C.G. Tocchetti, D.A. Kass, N. Paolocci, J.P. Toscano, Biochemistry
47 (2008) 13150–13152.
[6] B.K. Kemp-Harper, Antioxid. Redox Signal. 14 (2011) 1609–1613.
[7] V. Shafirovich, S.V. Lymar, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 7340–7345.
[8] J.A. Reisz, E.B. Klorig, M.W. Wright, S.B. King, Org. Lett. 11 (2009) 2719–2721.
[9] S.A. Suarez, M.H. Fonticelli, A.A. Rubert, E. de la Llave, D. Scherlis, R.C. Salvarezza,
M.A. Marti, F. Doctorovich, Inorg. Chem. 49 (2010) 6955–6966.
[10] J. Rosenthal, S.J. Lippard, J. Am. Chem. Soc. 132 (2010) 5536–5537.
[11] Y. Zhou, K. Liu, J.-Y. Li, Y. Fang, T.-C. Zhao, C. Yao, Org. Lett. 13 (2011) 1290–1293.
[12] J.A. Reisz, C.N. Zink, S.B. King, J. Am. Chem. Soc. 133 (2011) 11675–11685.
[13] M.R. Cline, C. Tu, D.N. Silverman, J.P. Toscano, Free Radic. Biol. Med. 50 (2011)
1274–1279.
Time (s)
1.0
0.8
0.6
0.4
0.2
0.0
(c)
m/z = 44
m/z = 30
[14] M.R. Cline, J.P. Toscano, J. Phys. Org. Chem. 24 (2011) 993–998.
[15] I. Boron, S.A. Suarez, F. Doctorovich, M.A. Marti, S.E. Bari, J. Inorg. Biochem. 105
(2011) 1044–1049.
0
500
1000
1500
Time (s)
[16] P.S. Wong, J. Hyun, J.M. Fukuto, F.N. Shirota, E.G. DeMaster, D.W. Shoeman, H.T.
Nagasawa, Biochemistry 37 (1998) 5362–5371.
Fig. 8. MIMS responses at m/z 30 and 44 for the oxidation of 100 μM (a) hydroxylamine,
(b) hydroxyurea, and (c) acetohydroxamic acid by 500 μM HOCl at 37 °C in 0.1 M PBS, pH
7.4. Note that signal intensities in (c) are approximately an order of magnitude smaller
than those in (a) and (b).
[17] D.R. Arnelle, J.S. Stamler, Arch. Biochem. Biophys. 318 (1995) 279–285.
[18] H.H. Schmidt, H. Hofmann, U. Schindler, Z.S. Shutenko, D.D. Cunningham, M.
Feelisch, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 14492–14497.
[19] K.M. Rusche, M.M. Spiering, M.A. Marletta, Biochemistry 37 (1998) 15503–15512.
[20] S. Adak, Q. Wang, D.J. Stuehr, J. Biol. Chem. 275 (2000) 33554–33561.
[21] C.-C. Wei, Z.-Q. Wang, A.L. Meade, J.F. McDonald, D.J. Stuehr, J. Inorg. Biochem. 91
(2002) 618–624.
[22] S. Donzelli, M.G. Espey, W. Flores-Santana, C.H. Switzer, G.C. Yeh, J. Huang, D.J.
Stuehr, S.B. King, K.M. Miranda, D.A. Wink, Free Radic. Biol. Med. 45 (2008)
578–584.
[23] J.M. Fukuto, Methods Enzymol. 268 (1996) 365–375.
[24] J. Santolini, J. Inorg. Biochem. 105 (2011) 127–141.
[25] M. Hecker, C. Schott, B. Bucher, R. Busse, J.-C. Stoclet, Eur. J. Pharmacol. 275 (1995)
R1–R3.
[26] C.D. Garlichs, J. Beyer, H. Zhang, A. Schmeisser, K. Plotze, A. Mugge, S. Schellong,
W.G. Daniel, J. Lab. Clin. Med. 135 (2000) 419–425.
Table 3
Oxidation of other substrates by HOCl.
Substrate
% HNOa
NH2OH
Hydroxyurea
Acetohydroxamic acid
90
91
8
[27] F. Daghigh, J.M. Fukuto, D.E. Ash, Biochem. Biophys. Res. Commun. 202 (1994)
174–180.
[28] J.L. Boucher, J. Custot, S. Vadon, M. Delaforge, M. Lepoivre, J.P. Tenu, A. Yapo, D.
Mansuy, Biochem. Biophys. Res. Commun. 203 (1994) 1614–1621.
[29] J. Yoo, J.M. Fukuto, Biochem. Pharmacol. 50 (1995) 1995–2000.
[30] J.M. Fukuto, G.C. Wallace, R. Hszieh, G. Chaudhuri, Biochem. Pharmacol. 43 (1992)
607–613.
a
Substrates (100 μM) were incubated with HOCl (500 μM)
at 37 °C in 0.1 M PBS, pH 7.4. HNO yields are reported relative
to the HNO donor, Angeli's salt, as determined by N2O head-
space analysis (SEM 5%; n≥3).