10.1002/cctc.201800849
ChemCatChem
COMMUNICATION
Keywords: epoxidation • fatty acids • fatty acid methyl esters
fungal peroxygenases • oxidoreductases
E
di-E-syn
A
B
di-E-anti
[1] U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, H. J.
Schäfer, Angew. Chem. Int. Ed. 2011, 50, 3854-3871.
[2] N. Prileschajew, Ber. Dtsch. Chem. Ges. 1909, 42, 4811-4815.
[3] S. M. Danov, O. A. Kazantsev, A. L. Esipovich, A. S. Belousov, A.
E. Rogozhin, E. A. Kanakov, Catal. Sci. Technol. 2017, 7, 3659-
3675.
CH3-C18:1cis-Δ9
CH3-C18:2 cis,cis-Δ9,Δ12
(-7)-OH
[4] F. Björkling, H. Frykman, S. E. Godtfredsen, O. Kirk, Tetrahedron
1992, 48, 4587-4592.
[5] C. Tiran, J. Lecomte, E. Dubreucq, P. Villeneuve, OCL 2008, 15,
16
18
20
22
24
18
20
22
24
Retention time (min)
Retention time (min)
179-183.
[6] R. T. Ruettinger, A. J. Fulco, J. Biol. Chem. 1981, 256, 5728-5734.
[7] G. Gröbe, M. Ullrich, M. Pecyna, D. Kapturska, S. Friedrich, M.
Hofrichter, K. Scheibner, AMB Express 2011, 1, 31-42.
[8] J. Kiebist, K. U. Schmidtke, J. Zimmermann, H. Kellner, N.
Jehmlich, R. Ullrich, D. Zänder, M. Hofrichter, K. Scheibner,
ChemBioChem 2017, 18, 563-569.
di-E-syn
E
C
D
ED
di-E-anti
[9] M. Hofrichter, H. Kellner, M. J. Pecyna, R. Ullrich, Adv. Exp. Med.
Biol. 2015, 851, 341-368.
[10] M. Hofrichter, R. Ullrich, M. J. Pecyna, C. Liers, T. Lundell, Appl.
Microbiol. Biotechnol. 2010, 87, 871-897.
[11] A. Gutiérrez, E. D. Babot, R. Ullrich, M. Hofrichter, A. T. Martínez,
J. C. del Río, Arch. Biochem. Biophys. 2011, 514, 33-43.
[12] R. Ullrich, J. Nuske, K. Scheibner, J. Spantzel, M. Hofrichter, Appl.
Environ. Microbiol. 2004, 70, 4575-4581.
ED
(-7)-OH
CH3-C18:2 cis,cis-Δ9,Δ12
(-10)-OH (-7)-OH
CH3-C18:1cis-Δ9
[13] M. J. Pecyna, R. Ullrich, B. Bittner, A. Clemens, K. Scheibner, R.
Schubert, M. Hofrichter, Appl. Microbiol. Biotechnol. 2009, 84, 885-
897.
18
20
22
24
16
18
20
22
24
Retention time (min)
Retention time (min)
[14] D. Floudas, M. Binder, R. Riley, K. Barry, R. A. Blanchette, B.
Henrissat, A. T. Martínez, R. Otillar, J. W. Spatafora, J. S. Yadav
et al., Science 2012, 336, 1715-1719.
[15] J. E. Stajich, S. K. Wilke, D. Ahren, C. H. Au, B. W. Birren, M.
Borodovsky, C. Burns, B. Canbäck, L. A. Casselton, C. K. Cheng
et al., Proc. Natl. Acad. Sci. USA 2010, 107, 11889-11894.
[16] E. D. Babot, J. C. del Río, L. Kalum, A. T. Martínez, A. Gutiérrez,
Biotechnol. Bioeng. 2013, 110, 2332.
Figure 3. GC-MS of reactions of methyl oleate (left, underlined) with 1 µM
CglUPO at 60 min (A) and 200 nM MroUPO at 120 min and (C), showing the
epoxide (E), epoxide derivatives (ED); and the hydroxylated derivatives, and
methyl linoleate (right, underlined) with 1 µM CglUPO at 60 min (B) and 1 µM
MroUPO at 120 min (D), showing the diepoxides (di-E), epoxide derivatives
(ED) and the hydroxylated derivatives of methyl linoleate.
[17] E. D. Babot, J. C. del Río, M. Cañellas, F. Sancho, F. Lucas, V.
Guallar, L. Kalum, H. Lund, G. Gröbe, K. Scheibner, R. Ullrich, M.
Hofrichter, A. T. Martínez, A. Gutiérrez, Appl. Environ. Microbiol.
2015, 81, 4130-4142.
[18] A. Olmedo, C. Aranda, J. C. del Río, J. Kiebist, K. Scheibner, A. T.
Martínez, A. Gutiérrez, Angew. Chem. Int. Ed. 2016, 55, 12248-
12251.
[19] A. Olmedo, J. C. del Río, J. Kiebist, K. Scheibner, A. T. Martínez,
A. Gutiérrez, Chem. -Eur. J. 2017, 23, 16985-16989.
[20] Y. Miura, A. J. Fulco, Biochim. Biophys. Acta-Lipids Lipid Metab.
1975, 388, 305-317.
[21] A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502.
[22] Y. Wang, D. Lan, R. Durrani, F. Hollmann, Curr. Opin. Chem. Biol.
2017, 37, 1-9.
[23] S. Bormann, A. G. Baraibar, Y. Ni, D. Holtmann, F. Hollmann,
Catal. Sci. Technol. 2015, 5, 2038-2052.
[24] A. D. N. Vaz, D. F. McGinnity, M. J. Coon, Proc. Natl. Acad. Sci.
USA 1998, 95, 3555-3560.
[25] E. G. Hrycay, S. M. Bandiera, Adv. Exp. Med. Biol. 2015, 851, 1-
61.
[26] C. Aranda, R. Ullrich, J. Kiebist, K. Scheibner, J. C. del Río, M.
Hofrichter, A. T. Martínez, A. Gutiérrez, Catal. Sci. Technol. 2018,
8, 2394-2401.
The selective epoxidation of FA and FAME, a reaction of
great interest for the chemical industry,[21] must be added to the
repertoire
of
UPOs,
as
dream
biocatalysts
for
oxyfunctionalization chemistry.[9;22;23] The structural determinants
driving to selective epoxidations in MroUPO and CglUPO
(compared to AaeUPO and CciUPO) are difficult to be identified
with the information available on these new heme-thiolate
enzymes (note that only one UPO crystal structure has been
published to date). However, in related P450, epoxidation vs
hydroxylation rates have been related to the balance between
the iron hydroperoxo and oxenoid forms after the oxidative
activation of the enzyme, with an active site threonine being
involve in the transition as the proton donor.[24;25] Interestingly, a
threonine residue is present at the active sites of both AaeUPO
and CciUPO, and absent from those of MroUPO and CglUPO,
as shown by Aranda et al.[26] but its relevance in the FA
hydroxylation/epoxidation balance is still to be experimentally
investigated. This and other structural-functional studies with
UPOs will help to understand the reaction mechanisms of these
versatile enzymes, and to obtain ad-hoc variants for
biotechnological application.
Acknowledgements
This work was funded by the BIORENZYMERY (AGL2014-
53730-R) project of the Spanish MINECO (co-financed by
FEDER) and by the CSIC 201740E071 project. H. Lund
(Novozymes) is acknowledged for rCciUPO.
This article is protected by copyright. All rights reserved.