Nitric/Nitrous Acid Equilibria in Water
J. Phys. Chem. A, Vol. 103, No. 11, 1999 1687
The equilibrium constants for all the reactions change with
water density in the direction expected, on the basis of the
change in polarity. In most cases, the measured equilibrium
constants are in good agreement with the gas-phase value when
extrapolated to zero density. While the behavior of ionic
reactions 3 and 10 may be quantified in terms of a modified
3
3,36
Born model,
nonionic reactions 4-7 require other types of
7
9
models to predict solvation effects. These models are useful
for extrapolation of the equilibrium constants to even higher
temperatures, which are also of interest in hydrothermal
technology.
Acknowledgment. We gratefully acknowledge support from
the Department of Energy (DE-FG07-96ER14687), from the
U.S. Army for a University Research Initiative Grant (30374-
CH-URI), from the R.A. Welch Foundation, and from the
Separations Research Program at the University of Texas, a
consortium of over 30 companies.
References and Notes
(
1) Miller, J. A.; Bowman, C. T. Prog. Energy Combust. Sci. 1989,
5, 287.
(2) Wendel, M. M.; Pigford, R. L. AIChE J. 1958, 4, 249.
(3) England, C.; Corcoran, W. H. Ind. Eng. Chem. Fundam. 1974, 13,
1
Figure 16. Speciation diagram of the major species in class IV
experiments at 380 °C and 31.0 MPa. Total nitrogen concentration is
-
1
0
.0208 mol kg
.
373.
(
(
(
4) Kaiser, E. W.; Wu, C. H. J. Phys. Chem. 1977, 81, 187.
5) Kaiser, E. W.; Wu, C. H. J. Phys. Chem. 1977, 81, 1701.
6) Odenbrand, C. U. I.; Andersson, L. A. H.; Brandin, J. G. M.;
products with an oxidation state higher than +3 (NO2, sum of
nitrate ion and nitric acid) and stabilizes products with an
oxidation state lower than +3 (N2O, NO). A relatively constant
Lundin, S. T. Appl. Catal. 1986, 27, 363.
7) Kiovsky, J. R.; Koradia, P. B.; Lim, C. T. Ind. Eng. Chem. Prod.
Res. DeV. 1980, 19, 218.
8) Kato, A.; Matsuda, S.; Kamo, T.; Nakajima, F.; Kuroda, H.; Narita,
(
-
concentration is observed for HNO2. The small increase in NO3
(
concentration upon addition of NaNO2 is caused by an increase
T. J. Phys. Chem. 1981, 85, 4099.
-
-10
-8
-1
in OH concentration (from 10 to 10 mol kg , not shown)
resulting from the decrease in the HNO3 feed concentration and
increase in NaNO2, which exhibits basic properties.
(9) Tester, J. W.; Holgate, H. R.; Armellini, F. J.; Webley, P. A.;
Killilea, W. R.; Hong, G. T.; Barner, H. E. In Emerging Technologies in
Hazardous Waste Management; Tedder, D. W., Pohland, F. G., Ed.; ACS
Symposium Series 518; American Chemical Society: Washington, DC,
1993; pp 35-76.
The quantitative predictions of our model (see above, Figures
(
10) Gloyna, E. F.; Li, L. Waste Manage. 1993, 13, 379.
14-16) agree very well with the measured HNO2 and NO2
(11) Killilea, W. R.; Swallow, K. C.; Hong, G. T. In 2nd International
absorbance bands. Examples include the roughly proportional
increase of both HNO2 and NO2 bands generated by an increase
in HNO3 concentration (Figures 4 and 14), the relative effect
of oxygen on the NO2 and HNO2 bands (Figures 5 and 15),
and the weak sensitivity of the HNO2 band in the HNO3/NaNO2
mixtures to the solution composition (Figures 7 and 16).
The predictions of the model for the species whose absor-
bances were not measured directly also appear to be realistic.
Class IV (mixtures of HNO3 and NaNO2) experiments (Figure
Symposium on Supercritical Fluids; Department of Chemical Engineering,
Johns Hopkins University: Boston, MA, 1991; pp 173-176.
(12) Dell’Orco, P. C. Ph.D. Dissertation Thesis, University of Texas at
Austin, 1994.
(13) Dell’Orco, P. C.; Foy, B. F.; Robinson, J. M.; Buelow, S. J. Haz.
Waste Haz. Mater. 1993, 10, 221.
(14) Dell’Orco, P.; Foy, B.; Wilmanns, E.; Le, L.; Ely, J.; Patterson,
K.; Buelow, S. In InnoVations in Supercritical Fluids. Science and
Technology; Hutchenson, K. W., Foster, N. R., Ed.; American Chemical
Society: Washington, D. C., 1995; pp 179-196.
(15) Oldenborg, R.; Robinson, J. M.; Buelow, S. J.; Dyer, R. B.;
Anderson, G.; Dell’Orco, P. C.; Funk, K.; Willmanns, E.; Knutsen, K.
Hydrothermal Processing of Inorganic Components of Hanford Tank
Wastes; Los Alamos National Laboratories report LA-UR-94:3233; Los
Alamos National Laboratories, 1994.
7) suggested that significant amounts of a species with a nitrogen
oxidation state lower than +3 were formed. Indeed, a significant
contribution from NO is predicted by the model (Figure 16).
-
Concentration changes for other species including HNO3, NO3 ,
(16) Proesmans, P. I.; Luan, L.; Buelow, S. J. Ind. Eng. Chem. Res.
1997, 36, 1559.
+
-
N2O, oxygen, and the ion pairs NaOH and (Na )(NO3 ) follow
trends, which may be expected from the feed solution composi-
tion and/or oxidation state of nitrogen.
(
17) Adschiri, T.; Kanazawa, K.; Arai, K. J. Am. Ceram. Soc. 1992,
7
7
5, 2615.
(18) Adschiri, T.; Kanazawa, K.; Arai, K. J. Am. Ceram. Soc. 1992,
5, 1019.
(
(
19) Shoppelrei, J. W.; Brill, T. B. J. Phys. Chem. A 1997, 101, 8593.
20) Shoppelrei, J. W.; Kieke, M. L.; Wang, X.; Klein, M. T.; Brill, T.
Conclusions
B. J. Phys. Chem. 1996, 100, 14343.
Chemical equilibria in nitric acid solutions in SCW may be
measured directly from the absorbance bands of NO2 and HNO2
from 380-400 °C by UV-vis spectroscopy. These absorbance
bands are similar to those at ambient temperature, except the
fine structure of NO2 is far less than that in the gas phase. All
of the spectra appear to be nearly completely reversible upon
cooling. Equilibrium constants for reactions 3-7 and 10 can
be determined by optimization of the measured and calculated
absorbances of NO2 and HNO2. Other important decomposition
products that do not absorb in the wavelengths studied include
O2, NO, and, in mixtures of HNO3 and NaNO2, N2O.
(
(
(
21) Maiella, P. G.; Brill, T. B. Appl. Spectrosc. 1996, 50, 829.
22) Spohn, P. D.; Brill, T. B. J. Phys. Chem. 1989, 93, 6224.
23) Ratcliffe, C. I.; Irish, D. E. Can. J. Chem. 1985, 63, 3521.
(24) Oscarson, J. L.; Gillespie, S. E.; Izatt, R. M.; Chen, X.; Pando, C.
J. Solution Chem. 1992, 21, 789-801.
(
(
25) Marshall, W. L.; Slusher, R. J. Inorg. Nucl. Chem. 1975, 37, 2165.
26) Marshall, W. L.; Slusher, R. J. Inorg. Nucl. Chem. 1975, 37, 1191.
(27) Marshall, W. L.; Jones, E. V. J. Inorg. Nucl. Chem. 1974, 36, 2313.
(28) Barton, C. J.; Hebert, G. M.; Marshall, W. L. J. Inorg. Nucl. Chem.
961, 21, 141.
1
(
29) Seward, T. M. Geochim. Cosmochim. Acta 1984, 48, 121.
(30) Heinrich, C. A.; Seward, T. M. Geochim. Cosmochim. Acta 1990,
54, 2207.