906
Russ.Chem.Bull., Int.Ed., Vol. 50, No. 5, May, 2001
Rozenberg et al.
[Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, 39, 674
(Engl. Transl.)].
3. V. S. Savost´yanov, A. D. Pomogailo, B. S. Selenova, D. A.
Kritskaya, and A. N. Ponomarev, Izv. Akad. Nauk SSSR,
Ser. Khim., 1990, 768 [Bull. Acad. Sci. USSR, Div. Chem.
Sci., 1990, 39, 680 (Engl. Transl.)].
4. V. S. Savost´yanov, G. P. Belov, D. A. Kritskaya, A. D.
Pomogailo, and A. N. Ponomarev, Izv. Akad. Nauk SSSR,
Ser. Khim., 1990, 1015 [Bull. Acad. Sci. USSR, Div. Chem.
Sci., 1990, 39, 905 (Engl. Transl.)].
5. Entsiklopediya polimerov, Sov. entsiklopediya, Moscow, 1972,
1, 30 (in Russian).
6. S. P. Davtyan, V. P. Zhirkov, and S. A. Vol´fson, Usp.
Khim., 1984, 53, 251 [Russ. Chem. Rev., 1984, 53 (Engl.
Transl.)].
7. Khimicheskaya entsiklopediya, Sov. entsiklopediya, Moscow,
1988, 1, 116 (in Russian).
8. K. V. Yatsimirskii, Termokhimiya kompleksnykh soedinenii
[Thermochemistry of Complexes], Izd-vo Akad. Nauk SSSR,
Moscow, 1951, 251 pp. (in Russian).
9. M. Kh. Karapet´yants and M. L. Karapet´yants, Osnovnye
termodinamicheskie konstanty neorganicheskikh i organi-
cheskikh veshchestv [Main Thermodynamic Constants of In-
organic and Organic Compounds], Khimiya, Moscow, 1968,
470 pp. (in Russian).
10. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat´ev,
Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and
Yu. S. Khodeev, Energii razryva khimicheskikh svyazei.
Potentsialy ionizatsii i srodstvo k elektronu [Energies of Chemi-
cal Bond Cleavage. Ionization Potentials and Electron Affini-
ties], Nauka, Moscow, 1974, 351 pp. (in Russian).
11. C. T. Mortimer, Reactions Heats and Bond Strength,
Pergamon Press, OxfordLondonNew YorkParis, 1962.
12. Yu. I. Rubtsov and A. I. Kazakov, in Gorenie i vzryv, Mater.
chetvertogo vsesoyuz. simpoz. po goreniyu i vzryvu [Combus-
tion and Explosion. Fourth All-Union Symposium on Combus-
tion and Explosion], Proc., Chernogolovka, September 2327,
1974, Nauka, Moscow, 1977, 600 (in Russian)..
13. M. A. Porai-Koshits, in Kristallokhimiya [Crystal Chemis-
try], Itogi nauki i tekhniki, VINITI Akad. Nauk SSSR,
Moscow, 1981, 15, 13 (in Russian).
evolution (in the self-generated atmosphere) is lower
than that expected upon complete oxidation of the
initial product. The particular mechanism of the
thermooxidative destruction of the resulting polymer is
not entirely clear now and requires further investi-
gations.
Attention is attracted by the following fact. At the
end of gas evolution, solid-phase products are diamag-
netic, i.e., the thermolyzed material contains no Co-
containing para- and/or ferromagnetic phases (Co, CoO,
Co2O3).18 The magnetic properties of the resulting prod-
uct show themselves only in the case of thermolysis of
acrylamide complex 1 in air at Ttherm > 680 Ê. It can be
suggested that the solid-phase products formed at the
end of transformations in a self-generated atmosphere
have resulted from the interaction of the Co atoms with
the polymer matrix, as indicated by the data of electron
microscopy (see Fig. 4). In other words, at relatively
low temperatures of thermolysis, very small particles
stabilized by the polymer matrix are formed, whereas at
higher temperatures, they become larger and the result-
ing domains exhibit magnetic properties. A similar phe-
nomenon has been observed previously in a study of the
pyrolysis of cobalt carbonyls in a polybutadiene matrix.19
Thus, thermolysis of complex 1 is a multistage pro-
cess, which includes the following three macro stages:
dehydration, polymerization of the dehydrated mono-
mer, and thermooxidative destruction of the resulting
polymer. The exothermicity of the last two stages can be
one of the main reasons for the development of the
frontal polymerization process. Substantial heat evolu-
tion in the oxidative destruction of the polymer at the
third stage of transformations under definite heat and
mass transfer conditions can bring about an "extremal"
pattern of gas evolution.
The authors are grateful to N. V. Chukanov for the
assistance in the interpretation of the IR absorption
spectra of the products of transformation of complex 1
and to S. I. Evstratova for providing the initial sample of 1.
14. A. D. Negro, L. Ungaretti, and A. Perrotti, J. Chem. Soc.,
Dalton Trans., 1972, 15, 1639.
15. D. P. Bullivant, M. F. A. Dove, and M. J. Haley, J. Chem.
Soc., Chem. Commun., 1977, 584.
16. (a) M. K. Mishra, Macromol. Chem., Rapid Commun., 1985,
6, 541; (b) M. K. Mishra, J. Appl. Polym. Sci., 1985,
30, 725.
This study was supported by the Russian Foundation
for Basic Research (Project No. 01-03-33257).
17. S. N. Bhadant and T. K. Prasad, Macromol. Chem., 1980,
191, 1085.
18. D. D. Mishin, Magnitnye materialy, Vyssh. shkola, Mos-
cow, 1991, 384 s.
References
1. V. A. Ershova, A. V. Golovin, L. A. Sheludyakova, P. P.
Semyannikov, S. I. Pomogailo, and A. D. Pomogailo, Izv.
Akad. Nauk, Ser. Khim., 2000, 1455 [Russ. Chem. Bull., Int.
Ed., 2000, 49, 1448].
19. L. M. Bronstein, S. P. Solodovnikov, E. Sh. Mirzoeva,
E. Yu. Baukova, and P. M. Valetsky, Proc. Am. Chem. Soc.,
Div. Polym. Mater. Sci. Engin., 1994, 71, 397.
2. V. S. Savost´yanov, V. I. Ponomarev, A. D. Pomogailo,
B. S. Selenova, I. N. Ivleva, A. G. Starikov, and L. O.
Atovmyan, Izv. Akad. Nauk SSSR. Ser. Khim., 1990, 762
Received January 3, 2000;
in revised form May 15, 2000