116
E.G. Estupi~nꢀan et al. / Chemical Physics Letters 336 (2001) 109±117
order to access these states optically were too
small. Of course, high rotational states of
tration 8grant NAG5-8931). The authors thank
S.S. Prasad for a number of helpful discussions
and also thankH. Yu and S.C. Liu for calculating
the atmospheric OH photoexcitation rate.
OHꢀA2R are not produced by optical excitation
of OHꢀX2P in the atmosphere. As discussed by
2
Homann et al. [23], reaction of Hꢀ S with
N2OꢀX1R to produce OHꢀA2R N2ꢀX1Rg
is nonadiabatic, i.e., both the forward and reverse
reactions proceed via a surface-hopping mecha-
nism. One plausible explanation why we obtain a
References
[1] R.E. Dickinson, R.J. Cicerone, Nature 319 81986) 109.
[2] R.R. Garcia, S. Solomon, J. Geophys. Res. 99 81994)
12937.
negative result in spite of the fact that OHꢀA2R
chemiluminescence is readily observable from the
reverse reaction is that the probability of a surface-
[3] World Meteorological Organization 8WMO), Scienti®c
Assessment of Ozone Depletion: 1998, Report No. 44,
Global Ozone Research and Monitoring Project, Geneva,
Switzerland, 1999.
hopping transition is optimized when OHꢀA2R
is vibrationally and/or rotationally excited. An-
other possibility, of course, is that even though
[4] M.A. Khalil, R.A. Rasmussen, J. Geophys. Res. 97 81992)
14651.
OHꢀA2R emission is readily observable in the
[5] A.F. Bouwman, K.W. Van der Hoek, J.G.J. Olivier,
J. Geophys. Res. 100 81995) 2785.
translationally hot H N2O studies, the yield of
OHꢀA2R is very small.
[6] C. Kroeze, A. Mosier, L. Bouwman, Global Biogeochem.
Cycles 13 81999) 1.
The most recent analysis of the atmospheric
N2O budget suggests that the input ¯ux of N2O
into the atmosphere is approximately 4 Â 1035
molecules per year [6]. To assess the potential
importance of reaction 82b) as an atmospheric
source of N2O, an upper limit production rate via
this reaction has been calculated. Using the best
available OH absorption cross-sections [34] and
solar intensities in the 300±320 nm wavelength
[7] Intergovernmental Panel on Climate Change 8IPCC),
Climate Change: Radiative Forcing of Climate Change
and Evaluation of the IPCC IS92 Emission Scenarios,
Cambridge University Press, Cambridge, UK, 1995.
[8] S.S. Prasad, J. Geophys. Res. 99 81994) 5285.
[9] R.F. Delmdahl, K.-H. Gericke, Chem. Phys. Lett. 281
81997) 407.
[10] E.C. Zipf, S.S. Prasad, Geophys. Res. Lett. 25 81998) 4333.
[11] K.-R. Kim, H. Craig, Science 262 81993) 1855.
[12] S.S. Cli, M.J. Thiemens, Science 278 81997) 1774.
[13] T. Rahn, M. Wahlen, Science 278 81997) 1776.
[14] T. Rahn, H. Zhang, H. Wahlen, G.A. Blake, Geophys.
Res. Lett. 25 81998) 4489.
region [35], the rate of excitation of OHꢀA2R is
calculated to be ꢁ4 Â 1034 per year in the tropo-
sphere 80±12 km) and ꢁ4 Â 1035 per year in the
stratosphere 812±50 km). Allowing for the fact that
[15] S.S. Cli, C.A.M. Brenninkmeijer, M.H. Thiemens,
J. Geophys. Res. 104 81999) 16171.
about 40% of the OHꢀA2R that is formed in the
[16] D.W.T. Grith, G.C. Toon, B. Sen, J.-F. Blavier, R.A.
Toth, Geophys. Res. Lett. 27 82000) 2485.
atmosphere is lost via quenching by N2 [30±33], we
conclude that ꢁ2 Â 1035N2O per year would be
[17] Y.L. Yung, C.E. Miller, Science 278 81997) 1778.
[18] C.E. Miller, Y.L. Yung, Chemosphere: Global Change Sci.
2 82000) 255.
produced from OHꢀA2R N2 if the N2O yield
from this reaction was unity. Since we have dem-
,
[19] T. Rockmann, C.A.M. Brenninkmeijer, M. Wollenhaupt,
J.N. Crowley, P.J. Crutzen, Geophys. Res. Lett. 27 82000)
1399.
onstrated that the N2O yield is less than 1 Â 10À4
the total atmospheric N2O production rate via
reactions 82a) and 82b) is less than 2 Â 1031 mole-
cules per year, i.e., less than 0.005% of the total
atmospheric source strength.
[20] H. Zhang, P.O. Wennberg, V.H. Wu, G.A. Blake,
Geophys. Res. Lett. 27 82000) 2481.
[21] F. Turatti, D.W.T. Grith, S.R. Wilson, T. Rahn,
H. Zhang, G.A. Blake, Geophys. Res. Lett. 27 82000) 2489.
[22] D. Krankowsky, P. Lammerzahl, K. Mauersberger, Geo-
phys. Res. Lett. 27 82000) 2593 8and references therein).
[23] G. Homann, D. Oh, H. Iams, C. Wittig, Chem. Phys.
Lett. 155 81989) 356.
Acknowledgements
[24] E. Bohmer, S.K. Shin, Y. Chen, C. Wittig, J. Chem. Phys.
97 81992) 2536.
This research was supported by the National
Science Foundation 8grant ATM-95-26510) and
by the National Aeronautics and Space Adminis-
[25] H. Ohoyama, T. Sawai, S. Tsuboi, T. Kasai, J. Chem.
Phys. 109 81998) 4443.