A R T I C L E S
Weidenhof et al.
Ce3 redox couple as well as spillover of active oxygen.
+
7-14
useless waste. Flame aerosol synthesis and in particular liquid-
feed flame spray pyrolysis (LF-FSP) offers an attractive alterna-
tive to traditional preparative techniques because it provides easy
access to a wide variety of mixed-metal oxide solid solution
1
5
16
Furthermore, for instance, Baiker et al. and Ka sˇ par et al.
showed that the thermal stability as well as the OEC of these
solid solutions is improved by doping with small amounts of
silica.
24-29
and phase-separated nanopowders using one-step processing.
In contrast, these researchers report that doping with small
amounts of alumina has little effect on OEC values. These doped
nanopowders were made using LF-FSP processing. Baiker et
al. do suggest formation of solid solutions with the silica or
alumina dopants but do not further characterize silica or alumina
species present. In the case of the alumina, this is understandable
Flame aerosol synthesis is used widely to produce carbon-blacks,
fumed silica, and titania pigments on a large scale with good
30
cost-benefit ratios. The flame-made metal-oxide nanopowders
are usually characterized by high specific surface areas,
1
5
nonporous structures, and improved resistance to sintering,
properties that appear to be very promising for multiple
2
9,31-37
as the OEC activities are not comparable with the SiO
materials.
2
-doped
applications in heterogeneous catalysis.
In LF-FSP processing, mixtures of metalloorganic precursors
(metal carboxylates and/or alkoxides) dissolved in alcohol
solvent are aerosolized with oxygen and afterward ignited via
methane torches within a quartz chamber. Subsequent combus-
tion of the aerosol at temperatures ranging from 1500 to 2000
°C followed by rapid quenching produces dispersible nanosized
oxide powders with element ratios identical to those in the
precursor solutions and occasionally with unknown phase
Several additional factors including support materials, catalyst
composition, metal loading, calcination temperatures, prepara-
tion methods, and reaction conditions must be considered for
the successful design of any new, high-activity catalyst systems.
However, a vast number of possible elemental combinations
with potential catalytic activity for the desired reactions remain
to be explored. Unfortunately, the complexity of the variables
involved limits the total number of systems that can be and
have been investigated on various supports in the recent
3
8,39
compositions.
LF-FSP allows the production of up to five
different oxide compositions within a single week and, therefore,
may be regarded as a combinatorial method for synthesizing
2
,17-21
past.
Some of the reasons for this are as follows.
2
4,40
metal oxide powders.
Heterogeneous catalysts are most often prepared using a set
of standard methods including wet precipitation, sol-gel
processing, solid-state reactions, and impregnation techniques
High-throughput experimentation (HTE) has recently emerged
as valuable approach to discover new materials, especially
catalysts, and is rapidly becoming a widely accepted tool in
2
2,23
(
e.g., incipient wetness).
All of these methods have been
4
1-53
industrial as well as academic research.
In the field of
investigated extensively as a means to improve surface area,
porosity, microstructure, oxidation states, compositions, and
catalyst stability. Despite remarkable progress, there remains a
general demand for optimized synthetic methods to produce high
surface area, sinter-resistant, multicomponent catalysts that are
smoothly tailorable for the required catalytic application.
In addition, conventional catalyst preparation methods (es-
pecially wet-chemical synthesis) often entail multiple process
steps that are time-consuming, difficult to control, and to some
extent accompanied by the production of large amounts of
heterogeneous catalysis, high-throughput approaches normally
(
(
24) Kim, M.; Laine, R. M. J. Ceram. Process. Res. 2007, 8, 129–136.
25) Sutorik, A. C.; Neo, S. S.; Treadwell, D. R.; Laine, R. M. J. Am.
Ceram. Soc. 1998, 81, 1477–1486.
(26) Baranwal, R.; Villar, M. P.; Garcia, R.; Laine, R. M. J. Am. Ceram.
Soc. 2001, 84, 951–961.
(27) Marchal, J.; John, T.; Baranwal, R.; Hinklin, T.; Laine, R. M. Chem.
Mater. 2004, 16, 822–831.
(28) Kim, S.; Gislason, J. J.; Morton, R. W.; Pan, X. Q.; Sun, H. P.; Laine,
R. M. Chem. Mater. 2004, 16, 2336–2343.
(
29) Azurdia, J. A.; Marchal, J.; Shea, P.; Sun, H.; Pan, X. Q.; Laine,
R. M. Chem. Mater. 2006, 18, 731–739.
(
7) Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.; Ikeue, K. Chem.
(30) Oswald, M.; Deller, K. Elements Degussa Science Newsletter 2004,
9, 16–20.
Mater. 2008, 20, 4489–4494.
(
(
8) Stark, W. J.; Maciejewski, M.; M a¨ dler, L.; Pratsinis, S. E.; Baiker,
A. J. Catal. 2003, 220, 35–43.
(31) Piacentini, M.; Strobel, R.; Maciejewski, M.; Pratsinis, S. E.; Baiker,
A. J. Catal. 2006, 243, 43–56.
9) Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J. A. Appl.
Catal. B 2007, 75, 189–200.
(32) Strobel, R.; Krumeich, F.; Pratsinis, S. E.; Baiker, A. J. Catal. 2006,
243, 229–238.
(
(
(
(
(
(
(
(
(
10) Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J. A. Appl.
(33) Strobel, R.; Krumeich, F.; Stark, W. J.; Pratsinis, S. E.; Baiker, A.
J. Catal. 2004, 222, 307–314.
Catal. B 2007, 75, 201–209.
11) Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J. A. Appl.
Catal. B 2007, 75, 210–220.
(34) Strobel, R.; Stark, W. J.; M a¨ dler, L.; Pratsinis, S. E.; Baiker, A. J.
Catal. 2003, 213, 296–304.
12) Rao, G. R.; Ka sˇ par, J.; Meriani, S.; Monte, R.; Graziani, M. Catal.
Lett. 1994, 24, 107–112.
(35) Stark, W. J.; Wegner, K.; Pratsinis, S. E.; Baiker, A. J. Catal. 2001,
197, 182–191.
13) Fornasiero, P.; Dimonte, R.; Rao, G. R.; Kaspar, J.; Meriani, S.;
Trovarelli, A.; Graziani, M. J. Catal. 1995, 151, 168–177.
14) Trovarelli, A. Catalysis by Ceria and Related Materials; Imperial
College Press: London, 2002; Vol. 2.
(36) Stark, W. J.; Pratsinis, S. E.; Baiker, A. J. Catal. 2001, 203, 516–
524.
(37) Vormberg, R. Elements Degussa Science Newsletter 2004, 9, 21–
23.
15) Schulz, H.; Stark, W. J.; Maciejewski, M.; Pratsinis, S. E.; Baiker,
A. J. Mater. Chem. 2003, 13, 2979–2984.
(38) Hinklin, T. R.; Azurdia, J.; Kim, M.; Marchal, J. C.; Kumar, S.; Laine,
R. M. AdV. Mater. 2008, 20, 1373–1375.
16) Di Monte, R.; Fornasiero, P.; Kapar, J.; Graziani, M.; Gatica, J. M.;
Bernal, S.; G o´ mez-Herrero, A. Chem. Commun. 2000, 2167–2168.
17) Gobin, O. C.; Martinez Joaristi, A.; Sch u¨ th, F. J. Catal. 2007, 252,
(39) Laine, R. M.; Bickmore, C. R.; Treadwell, D. R.; Waldner, K. F.
J. Am. Ceram. Soc. 1996, 79, 1419–1423.
(40) Azurdia, J.; Marchal, J.; Laine, R. M. J. Am. Ceram. Soc. 2006, 89,
2749–2756.
2
05–214.
18) Busch, O. M.; Hoffmann, C.; Johann, T. R. F.; Schmidt, H. W.;
Strehlau, W.; Schuth, F. J. Am. Chem. Soc. 2002, 124, 13527–13532.
19) Ozturk, S.; Senkan, S. Appl. Catal. B 2002, 38, 243–248.
20) Richter, M.; Langpape, M.; Kolf, S.; Grubert, G.; Eckelt, R.; Radnik,
J.; Schneider, M.; Pohl, M. M.; Fricke, R. Appl. Catal. B 2002, 36,
(41) Senkan, S. M.; Ozturk, S. Angew. Chem., Int. Ed. 1999, 38, 791–
795.
(
(
(42) Bein, T. Angew. Chem., Int. Ed. 1999, 38, 323–326.
(43) Maier, W. F. Angew. Chem., Int. Ed. 1999, 38, 1216–1218.
(44) Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg,
W. H. Angew. Chem., Int. Ed. 1999, 38, 2494–2532.
(45) Hagemeyer, A.; Jandeleit, B.; Liu, Y.; Poojary, D. M.; Turner, H. W.;
Volpe, A. F.; Henry Weinberg, W. Appl. Catal. A 2001, 221, 23–
43.
2
61–277.
(
(
(
21) Krantz, K.; Ozturk, S.; Senkan, S. Catal. Today 2000, 62, 281–289.
22) Delmon, B. J. Therm. Anal. Calorim. 2007, 90, 49–65.
23) Ertl, G.; Kn o¨ zinger, H.; Weitkamp, J. Handbook of Heterogeneous
Catalysis; Wiley-VCH: Weinheim, Germany, 1997; Vol. 1.
(46) Senkan, S. Angew. Chem., Int. Ed. 2001, 40, 312–329.
9
208 J. AM. CHEM. SOC. 9 VOL. 131, NO. 26, 2009