L. Zhang, H. He / Journal of Catalysis 268 (2009) 18–25
25
NH þ O
NH
þ NO ! N
NH þ NO ! N
H þ OH ! H
A possible role of molecular O
has also been proposed in the literature [1,8] but may require high-
er temperatures compared to the interaction of NH with oxygen
atom, which is in agreement with our above-mentioned results.
We found that O could also be adsorbed dissociatively to form
surface oxygen atom on H -pretreated Ag/Al at higher temper-
2
! NO þ OH
þ H
O þ H
ð8Þ
product. At temperatures above 140 °C, the SCO of NH3 follows
an iSCR mechanism. That is, the –NH mainly reacts with molecular
O to form NO. Then, the in situ-formed NO interacts with the NH
2 x
2 2
and is reduced to N , with N O as a by-product.
2
2
2
O
ð9Þ
2
ð10Þ
ð11Þ
2
O
Acknowledgments
2
3 x
in NH oxidation to produce NO
This work was financially supported by the Chinese Academy of
Sciences (KZCX1-YW-06-04) and the National Natural Science
Foundation of China (10735090).
3
2
2
2 3
O
atures (160 °C; Fig. 2), and the coverage of active oxygen species
increases with an increase of temperature up to160 °C. Fig. 8 shows
Appendix A. Supplementary material
that the adsorbed NH
3
could be quickly activated to form –NH
intermediates via reaction (3) in the presence of oxygen atom.
However, at higher temperatures (>140 °C), the –NH mainly inter-
acted with the oxygen species to form NO intermediates (Fig. 8).
This demonstrates that the increase of the ratio (O/NH) favors
the formation of NO at higher temperatures. We could infer that
References
[
[
[
1] J. Zawadzki, Disc. Faraday Soc. 8 (1950) 140.
2] N.I. Il’chenko, G.I. Golodets, J. Catal. 39 (1975) 7.
3] N.I. Il’chenko, G.I. Golodets, J. Catal. 39 (1975) 73.
the adsorbed NH
at the same time over H
tures (>140 °C). Firstly, the oxygen atom activated the adsorbed
NH to form –NH intermediates, and then the formed –NH inter-
acted with the oxygen atom or gaseous O to produce NO ad-spe-
cies under this condition. However, at low temperatures (<140 °C),
the adsorbed NH mainly interacts with oxygen atom. This may ex-
plain the different reaction mechanisms of NH oxidation over H
pretreated Ag/Al at low temperatures (<140 °C) and at temper-
atures above 140 °C.
It could be noted that at temperatures above 350 °C (Fig. 1) a
significant amount of NO desorbed/formed over the Ag/Al , pri-
marily because at higher temperatures (>350 °C), the in situ-
formed NO could directly desorb as one of the products.
Ag has been proposed as the main active species on the Ag/
in the oxidation of NH at low temperatures (<140 °C), while
Ag could also be the active species at temperatures above 140 °C
17]. In this study, we found that both adsorbed NH and O could
be activated by Ag , which explains the enhanced low temperature
3
interacted with oxygen atom and gaseous O
2
-pretreated Ag/Al at higher tempera-
2
O
3
[4] N.I. Il’chenko, Russ. Chem. Rev. 45 (1976) 1119.
2
[
[
[
5] J.M. Bradley, A. Hopkinson, D.A. King, J. Phys. Chem. 99 (1995) 7032.
6] M. Amblard, R. Burch, B.W.L. Southward, Catal. Today 59 (2000) 365.
7] L.I. Darvell, K. Heiskanen, J.M. Jones, A.B. Ross, P. Simell, A. Williams, Catal.
Today 81 (2003) 681.
3
2
x
[
[
8] J.M.G. Amores, V.S. Escribano, G. Ramis, G. Busca, Appl. Catal. B 13 (1997) 45.
9] L. Chmielarz, P. Ku s´ trowski, A. Rafalska-Łasocha, R. Dziembaj, Appl. Catal. B 58
3
(
2005) 235.
3
2
-
[10] G. Qi, J.E. Gatt, R.T. Yang, J. Catal. 226 (2004) 120.
[
[
11] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, Appl. Catal. B 40
2003) 101.
12] G. Qi, R.T. Yang, Appl. Catal. A 287 (2005) 25.
2 3
O
(
[13] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, J. Catal. 199 (2001)
107.
2 3
O
[
[
[
14] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, J. Catal. 157 (1995) 523.
15] J.L. Gland, V.N. Korchak, J. Catal. 53 (1978) 97.
16] V.A. Kondratenko, M. Baerns, Catal. Today 121 (2007) 210.
x
0
[17] L. Zhang, C. Zhang, H. He, J. Catal. 261 (2009) 101.
[
[
18] L. Lefferts, J.G. van Ommen, J.R.H. Ross, Appl. Catal. 31 (1987) 291.
19] C. Rehren, M. Muhler, X. Bao, R. Schlogl, G. Ertl, Zeitschrift für Physikalische
Chemie 174 (1991) 11.
Al
2
O
3
3
+
[
3
2
[20] M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B 30 (2001) 101.
[21] G. Ramis, M.A. Larrubia, G. Busca, Top. Catal. 11/12 (2000) 161.
0
[
[
22] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 208.
23] H. Zou, J. Shen, Thermochim. Acta 351 (2000) 165.
+
activity. However, the role of Ag on the Ag/Al
2 3 3
O in NH oxidation
is only to activate the adsorbed NH
3
.
[24] S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Catal. Today 90 (2004) 3.
[
25] S. He, C. Zhang, M. Yang, Y. Zhang, W. Xu, N. Cao, H. He, Sep. Purif. Technol. 58
2007) 173.
(
[
[
[
[
[
[
26] J. M u} slehiddino g˘ lu, M. Albert Vannice, J. Catal. 217 (2003) 442.
27] V.A. Matyshak, O.V. Krylov, Catal. Today 25 (1995) 1.
28] K.I. Hadjiivanov, Catal. Rev. 42 (1&2) (2000) 71.
29] X. Wang, H. Chen, W.M.H. Sachtler, J. Catal. 197 (2001) 281.
30] J.E. Germain, R. Perez, Bull. Soc. Chim (France) (1972) 2042.
31] G.M. Underwood, T.M. Miller, V.H. Grassian, J. Phys. Chem. A 103 (1999) 6184.
[32] H. He, X. Zhang, Q. Wu, C. Zhang, Y. Yu, Catal. Surv. Asia 12 (2008) 38.
[33] X. Zhang, H. He, H. Gao, Y. Yu, Spectrochim. Acta Part A: 71 (2008) 1446.
5
. Conclusions
Chemisorbed oxygen atom enhances the low temperature
(
<140 °C) activity of NH
3
oxidation over Ag/Al
mainly interacts with adsorbed NH
2
O
3
; in contrast, gas
at temperatures
phase O
2
3
above 140 °C. The pathway of NH
low temperatures (<140 °C) differs from that at temperatures
above 140 °C. At low temperatures (<140 °C), NH oxidation fol-
lows the –NH mechanism. That is, the adsorbed NH first reacts
with oxygen atom to form a –NH intermediate. Then the –NH
interacts with the chemisorbed oxygen atom to form a –HNO inter-
3 2 3
oxidation over Ag/Al O at
[
34] T. Venkov, K. Hadjiivanov, D. Klissurski, Phys. Chem. Chem. Phys. 4 (2002)
443.
2
3
[35] M. Trombetta, G. Ramis, G. Busca, B. Montanari, A. Vaccari, Langmuir 13 (1997)
4628.
3
[
[
[
36] D.P. Sobczyk, E.J.M. Hensen, A.M. de Jong, R.A. van Santen, Top. Catal. 23 (2003)
09.
1
37] T. Curtin, F. O’ Regan, C. Deconinck, N. Knüttle, B.K. Hodnett, Catal. Today 55
(2000) 189.
38] G. Ramis, L. Yi, G. Busca, Catal. Today 28 (1996) 373.
mediate. The interaction of –NH and –HNO would produce N
H
2
and
2
O directly, while two –HNO would interact to form a N O by-
2