634
KLIMUK et al.
rialy FP (FP Fibrous Filtering Materials), Moscow:
CONCLUSIONS
Znanie, 1968.
(1) Analysis of the ozone decomposition on com-
mercial and pilot filtering materials shows that filters
based on polystyrene (FPS-15, FPSAN-70-0.5) ex-
hibit a high activity in ozone binding; FPF42-10-3.0
and FPAN-10-3.0 filters and glass fibers are inert
toward ozone; FPP-70-0.5 and FPA-15-2.0 filters
and carbonized microfibers possess an intermediate
activity.
9. Filatov, Yu.N., Elektroformovanie voloknistykh mate-
rialov (EVF-protsess) [Electroforming of Fibrous
Materials (EVF Process), Moscow: Neft’ i gaz, 1997.
10. Basmanov, P.I., Kirichenko, V.N., Filatov, Yu.N.,
and Yurov, F.L., Vysokoeffektivnaya ochistka gazov
ot aerozolei fil’trami Petryanova (High-Efficiency
Purification of Gases To Remove Aerosols with
Petryanov Filters), Moscow: Nauka, 2003.
11. Koshcheev, A.P., Serzhantov, A.E., and Shepe-
lev, A.D., Tret’i Petryanovskie chteniya, 19 21
iyunya 2001 g., Trudy (Proc. of Third Petryanov
Readings, June 19 21, 2001), Moscow: RITs MGIU,
pp. 148 154.
(2) The activity of the polymeric filters decreases
under the action of ozone and is partly restored in
its absence. The activity of carbonized filters increases
upon treatment with ozone.
12. Budyka, A.K., Polevov, V.N., and Shepelev, A.D.,
Abstracts of Papers, Mezhdunarodnaya nauchno-prak-
ticheskaya konferentsiya Aerozoli i bezopasnost’
2005 , Obninsk, 24 28 oktyabrya 2005 g. (Int. Sci.-
Pract. Conf. Aerosols and Safety 2005, Obninsk,
October 24 28, 2005), Obninsk: FGOU GTsIPK,
2005.
13. Filatov, Yu., Electrospinning of Micro- and Nano-
fibers: Fundamentals and Applications in Separation
and Filtration Processes, Budyka, A. and Kirichen-
ko, V., Eds., New York: Begell House, 2007.
(3) Carbonized fibers show a complicated varia-
tion of activity in ozone binding.
ACKNOWLEDGMENTS
The authors are grateful to E.M. Kasatkin and
N.F. Potapova for the provided technique for produc-
tion and titration of ozone and for detailed consulta-
tions in the course of the study and to N.V. Kozlova
for measuring the UV absorption spectrum of ozone.
14. Braude, G.E., Semenova, T.A., and Markina, M.I.,
Khimiya i tekhnologiya azotnykh udobrenii, Vypusk 12
(Chemistry and Technology of Nitrogen Fertilizers,
Issue 12), Moscow: Goskhimizdat, 1961, pp. 67 75.
15. Razumovskii, S.D. and Zaikov, G.E., Ozon i ego re-
aktsii s organicheskimi soedineniyami (kinetika i
mekhanizm) [Ozone and Its Reactions with Organic
Compounds (Kinetics and Mechanism)], Moscow:
Nauka, 1974.
16. Potapova, F. and Rakov, A.A., Elektrokhimiya, 1971,
vol. 7, no. 4, pp. 537 540.
17. Obvintseva, L.A., Chibirova, F.Ch., Kazakov, S.A.,
et al., Sensors, 2003, vol. 3, p. 504.
18. Okabe, H., Photochemistry of Small Molecules,
The study was financially supported by the Interna-
tional Scientific-Technological Center (grant no. 3288).
REFERENCES
1. Lunin, V.V., Popovich, M.P., and Tkachenko, S.N.,
Fizicheskaya khimiya ozona (Physical Chemistry of
Ozone), Moscow: Mosk. Gos. Univ., 1998.
2. Varshavskii, V.Ya., Uglerodnye volokna (Carbon
Fibers), Moscow: TIP VINITI, 2005.
3. US Patent 5262129.
4. US Patent 5837036.
5. US Patent 5593594.
6. US Patent 5853457.
7. US Patent 5976471.
New York: John Wiley and Sons, 1978.
19. Razumovskii, S.D., Kislorod
elementarnye formy
8. Petryanov, I.V., Kozlov, V.I., Basmanov, P.I., and
i svoistva (Oxygen: Elementary Forms and Properties),
Moscow: Khimiya, 1979.
Ogorodnikov, B.I., Voloknistye fil’truyushchie mate-
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 81 No. 4 2008