Organic Letters
Letter
(6) (a) Trost, B. M.; Xu, J.; Reichle, M. J. Am. Chem. Soc. 2007, 129,
282−283. (b) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc.
Sonogashira couplings with terminal alkynes to afford
substituted alkynes 7a−c.
̈
2008, 130, 11852−11853. (c) Trost, B. M.; Koller, R.; Schaffner, B.
In conclusion, we have shown that N-(α-hydroxyacyl)-
glycinesters are excellent nucleophiles in Pd-catalyzed allylic
alkylations. The reaction proceeds well with different types of
N-(α-hydroxyacyl)-glycinesters as well as a series of allylic
carbonates. The conditions can tolerate the introduction of
highly functionalized side chains. Moreover, fine-tuning of the
reaction conditions allows for the synthesis of both
diastereomers in a selective manner. The protocol tolerates a
variety of different functional groups, e.g., stannanes, bromides,
and several (protected) alcohol moieties, and is also suitable
for subsequent modification of the side chain. Through these
direct and subsequent functionalizations, a large variety of side
chains could be introduced into a given (α-hydroxyacyl)-
glycinester. Investigations concerning the selective formation
of the (S,S)-diastereomers as well as applications to natural
product synthesis are currently under underway.
Angew. Chem., Int. Ed. 2012, 51, 8290−8293; Angew. Chem. 2012,
124, 8415−8418.
(7) (a) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126,
15044−15045. (b) Sherden, N. H.; Behenna, D. C.; Virgil, S. C.;
Stoltz, B. M. Angew. Chem., Int. Ed. 2009, 48, 6840−6843; Angew.
Chem. 2009, 121, 6972−6975. (c) Streuff, J.; White, D. E.; Virgil, S.
C.; Stoltz, B. M. Nat. Chem. 2010, 2, 192−196. (d) Reeves, C. M.;
Eidamshaus, C.; Kim, J.; Stoltz, B. M. Angew. Chem., Int. Ed. 2013, 52,
6718−6721; Angew. Chem. 2013, 125, 6850−6853.
(8) Pollegioni, L., Servi, S., Eds. Non-Natural Amino Acids: Methods
and Protocols; Springer: New York, 2012.
(9) (a) Schwarzer, D.; Finking, R.; Marahiel, M. A. Nat. Prod. Rep.
2003, 20, 275−287. (b) Walsh, C. T.; O'Brien, R. V.; Khosla, C.
Angew. Chem., Int. Ed. 2013, 52, 7098−7124; Angew. Chem. 2013,
125, 7238−7265. (c) Sussmuth, R. D.; Mainz, A. Angew. Chem., Int.
̈
Ed. 2017, 56, 3770−3821; Angew. Chem. 2017, 129, 3824−3878.
(10) (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624−
1654; Angew. Chem. 1988, 100, 1685−1715. (b) Seebach, D.; Beck, A.
K.; Studer, A. In Modern Synthetic Methods; Ernst, B., Leumann, C.,
Eds.; Helvetica Chimica Acta/VCH: Basel/Weinheim, 1995; pp 1−
179 and references cited therein.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(11) (a) Gerber, C.; Shoda, S.-I.; Thaler, A.; Wenger, R.; Ko, S. Y.;
Bossler, H. G.; Naef, R.; Beck, A. K.; Murtiashaw, C. W.; Krieger, M.;
Seebach, D. Helv. Chim. Acta 1993, 76, 1564−1590. (b) Miller, S. A.;
Griffiths, S. L.; Seebach, D. Helv. Chim. Acta 1993, 76, 563−595.
(12) (a) Scharfbillig, I. M.; Tan, E. W.; Wui Tan, E. Tetrahedron Lett.
1988, 29, 1565−1568. (b) Apitz, G.; Steglich, W. Tetrahedron Lett.
1991, 32, 3163−3166. (c) Merla, B.; Grumbach, H.; Risch, N.
Synthesis 1998, 1998, 1609−1614.
(13) (a) Easton, C. Chem. Rev. 1997, 97, 53−82. (b) Knowles, H. S.;
Hunt, K.; Parsons, A. F. Tetrahedron Lett. 2000, 41, 7121−7124.
(14) (a) Lee, S.; Beare, N. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001,
123, 8410−8411. (b) Zhao, L.; Li, C. Angew. Chem., Int. Ed. 2008, 47,
7075−7078; Angew. Chem. 2008, 120, 7183−7186. (c) Zhao, L.;
Basle, O.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4106−
4111. (d) Noisier, A. F. M.; Brimble, M. A. Chem. Rev. 2014, 114,
8775−8806. (e) Wei, X. H.; Wang, G. W.; Yang, S. D. Chem.
Commun. 2015, 51, 832−835. (f) Wei, Y.; Wang, J.; Wang, Y.; Yao,
X.; Yang, C.; Huo, C. Org. Biomol. Chem. 2018, 16, 4985−4989.
(15) (a) Zumpe, F.; Kazmaier, U. Angew. Chem., Int. Ed. 1999, 38,
1468−1470; Angew. Chem. 1999, 111, 1572−1574. (b) Kazmaier, U.;
Zumpe, F. L. Angew. Chem., Int. Ed. 2000, 39, 802−804; Angew. Chem.
2000, 112, 805−807. (c) Kazmaier, U.; Lindner, T. Angew. Chem., Int.
Ed. 2005, 44, 3303−3306; Angew. Chem. 2005, 117, 3368−3371.
(16) Huwig, K.; Schultz, K.; Kazmaier, U. Angew. Chem., Int. Ed.
2015, 54, 9120−9123; Angew. Chem. 2015, 127, 9248−9251.
(17) Kiefer, A.; Gawas, D.; Kazmaier, U. Eur. J. Org. Chem. 2015,
2015, 5810−5816.
(18) Kazmaier, U.; Deska, J.; Watzke, A. Angew. Chem., Int. Ed. 2006,
45, 4855−4858; Angew. Chem. 2006, 118, 4973−4976.
(19) (a) Bayer, A.; Kazmaier, U. Org. Lett. 2010, 12, 4960−4963.
(b) Bayer, A.; Kazmaier, U. Chem. - Eur. J. 2014, 20, 10484−10491.
(c) Servatius, P.; Kazmaier, U. Synlett 2015, 26, 2001−2005.
(20) Kazmaier, U.; Stolz, D. Angew. Chem., Int. Ed. 2006, 45, 3072−
3075; Angew. Chem. 2006, 118, 3143−3146.
(21) Zhang, W.; Huo, X.; Yang, G.; Fu, J.; He, R.; Zhang, J. J. Am.
Chem. Soc. 2017, 139, 9819−9822.
(22) (a) Barbie, P.; Kazmaier, U. Org. Lett. 2016, 18, 204−207.
(b) Gorges, J.; Kazmaier, U. Org. Lett. 2018, 20, 2033−2036.
(c) Gorges, J.; Panter, F.; Kjaerulff, L.; Hoffmann, T.; Kazmaier, U.;
Detailed experimental procedures and copies of HPLC,
GC, and NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by Saarland University.
■
REFERENCES
■
(1) (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395−
422. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921−
2944. (c) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258−297;
Angew. Chem. 2008, 120, 264−303. (d) Kazmaier, U., Ed. Transition
Metal Catalyzed Enantioselective Allylic Substitutions in Organic
Synthesis; Springer: Berlin, 2012. (e) Qu, J.; Helmchen, G. Acc.
Chem. Res. 2017, 50, 2539−2555. (f) Trost, B. M.; Schultz, J. E.
Synthesis 2019, 51, 1−30.
(2) Fang, P.; Raj Chaulagain, M.; Aron, Z. D. Org. Lett. 2012, 14,
2130−2133.
(3) (a) Zhang, K.; Peng, Q.; Hou, X. L.; Wu, Y. D. Angew. Chem., Int.
Ed. 2008, 47, 1741−1744; Angew. Chem. 2008, 120, 1765−1768.
(b) Hou, X.-L.; Wan, X.-L.; Chen, D.; Liu, W.; Zhu, X.-Z. J. Am.
Chem. Soc. 2009, 131, 8734−8735.
(4) (a) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121,
6759−6760. (b) Braun, M.; Meier, T. Angew. Chem., Int. Ed. 2006, 45,
6952−6955; Angew. Chem. 2006, 118, 7106−7109 and references
cited therein . (c) Mohr, J. T.; Stoltz, B. M. Chem. - Asian J. 2007, 2,
1476−1491. (d) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.;
Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776−6780; Angew. Chem.
2014, 126, 6894−6898.
Muller, R. Angew. Chem., Int. Ed. 2018, 57, 14270−14275; Angew.
̈
Chem. 2018, 130, 14466−14471. (d) Servatius, P.; Kazmaier, U. Org.
Biomol. Chem. 2018, 16, 3464−3472. (e) Junk, L.; Kazmaier, U.
Angew. Chem., Int. Ed. 2018, 57, 11432−11435; Angew. Chem. 2018,
130, 11602−11606.
(5) (a) Tsuji, J. Pure Appl. Chem. 1982, 54, 197−206. (b) Tsuji, J.
Tetrahedron 2015, 71, 6330−6348.
D
Org. Lett. XXXX, XXX, XXX−XXX