10.1002/cctc.202001294
ChemCatChem
COMMUNICATION
Conflict of interest
4
5
2-methyl-THF (0.53)
dioxane (0.64)
MTBE (0.55)
0
0
0
0
The authors declare no conflict of interest.
6
0
0
Keywords: carbonylation • ring expansion • γ-butyrolactone •
oxetane • solvent effect
7
hexane (0)
0
0
8
toluene (0.14)
MeOH (0.47)
dioxane (0.64)
dioxane (0.64)
0
0
[1]
a) A. Ghantous, H. Gali-Muhtasib, H. Vuorela, N. A. Saliba, N.
Darwiche, Drug Discov. Today 2010, 15, 668-678; b) T. Moore, R.
Adhikaria, P. Gunatillake, Biomaterials, 2005, 26, 3771-3782; c) Q.
Song, J. Zhao, G. Zhang, F. Peruch, S. Carlotti, Polym. J. 2020, 52, 3-
11; d) K. Wang, K. Amin, Z. An, Z. Cai, H. Chen, H. Chen, Y. Dong, X.
Feng, W. Fu, J. Gu, Y. Han, D. Hu, R. Hu, D. Huang, F. Huang, F.
Huang, Y. Huang, J. Jin, X. Jin, Q. Li, T. Li, Z. Li, Z. Li, J. Liu, J. Liu, S.
Liu, Hui. Peng, A. Qin, X. Qing, Y. Shen, J. Shi, X. Sun, B. Tong, B.
Wang, H. Wang, L. Wang, S. Wang, Z. Wei, T. Xie, C. Xu, H. Xu, Z.-K.
Xu, B. Yang, Y. Yu, X. Zeng, X. Zhan, G. Zhang, J. Zhang, M. Q. Zhang,
X.-Z. Zhang, X. Zhang, Y. Zhang, Y. Zhang, C. Zhao, W. Zhao, Y. Zhou,
Z. Zhou, J. Zhu, X. Zhu, B. Z. Tang, Mater. Chem. Front. 2020, DOI:
10.1039/D0QM00025F.
9
>99
25
40
0
10
11
18[b]
24[c]
Reaction conditions: 1a (0.4 mmol), Co2(CO)8 (0.01 mol), solvent (1 mL), 100
oC, 16 h. conversions and yields were determined by GC analysis. In the
parentheses is the isolated yield. THF = tetrahydrofuran; MTBE = methyl tert-
butyl ether. [a] The data of hydrogen-bond basicity are collected from ref. 23b.
[b] 12-crown-4 ether (0.4 mmol) was added. [c] 18-crown-6 ether (0.4 mmol)
was added.
Despite the hardness of accurate evaluating solvent effect
by static DFT-based calculation,[25] we still carried out the
theoretical computations considering the contribution from
explicit solvation effects in the implicit solvation model SMD[26] to
obtain more insights about HCo(CO)4 dissociation to [Co(CO)4]-
anion and solvated proton as well as the oxetane activation by
solvated proton in DME, THF and 1,4-dioxane solvents (detailed
computational results see SI). We found that although HCo(CO)4
dissociation to [Co(CO)4]- anion and DME-solvated proton is
endothermic in the solvation of DME, it is much more viable than
in the solvation of 1,4-dioxane. By local energy decomposition
with local pair natural orbital based coupled-cluster methods (i.e.
DLPNO-CCSD(T)),[27] we found that the interaction between
oxetane and DME-solvated proton fragments was stronger than
between oxetane and 1,4-dioxane- or THF-solvated proton,
which suggests the more effective oxetane activation by DME-
solvated proton. Indicated by the results of control experiments
and theoretical computation, the plausible mechanism was
proposed (detailed mechanism and relevant discussion see SI).
[2]
a) C. Nájera, F. Foubelo, J. M. Sansano, M. Yus, Org. Biomol. Chem.
2020, 18, 1232-1278; b) T. R. Belliotti, T. Capiris, I. V. Ekhato, J. J.
Kinsora, M. J. Field, T. G. Heffner, L. T. Meltzer, J. B. Schwarz, C. P.
Taylor, A. J. Thorpe, M. G. Vartanian, L. D. Wise, T. Zhi-Su, M. L.
Weber, D. J. Wustrow, J. Med. Chem. 2005, 48, 2294-2307.
a) F. Rudroff, J. Rydz, F. H. Ogink, M. Fink, M. D. Mihovilovica, Adv.
Synth. Catal. 2007, 349, 1436-1444; b) S. Xu, Z. Wang, X. Zhang, X.
Zhang, K. Ding, Angew. Chem. Int. Ed. 2008, 47, 2840-2843; Angew.
Chem. 2008, 120, 2882-2885.
[3]
[4]
a) S. Oi, M. Moro, H. Ito, Y. Honma, S. Miyano, Y. Inoue, Tetrahedron,
2002, 58, 91-97; b) C. Defieber, J.-F. Paquin, S. Serna, E. Carreira,
Org. Lett. 2004, 6, 3873-3876; c) T. Gendrineau, O. Chuzel, H. Eijsberg,
J.-P. Genet, S. Darses, Angew. Chem. Int. Ed. 2008, 47, 7669-7672;
Angew. Chem. 2008, 120, 7783-7786.
[5]
[6]
[7]
G. Hughes, M. Kimura, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125,
37, 11253-11258.
J. A. Bull, R. A. Croft, O. A. Davis, R. Doran, K. F. Morgan, Chem. Rev.
2016, 116, 12150-12233.
a) J. T. Lee, P. J. Thomas, H. Alper, J. Org. Chem. 2001, 66, 5424-
5426; b) Y. D. Y. L. Getzler, V. Mahadevan, E. B. Lobkovsky, G. W.
Coates, J. Am. Chem. Soc. 2002, 124, 1174-1175; c) J. A. R. Schmidt,
E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2005, 127, 11426-
11435; d) P. Ganji, D. J. Doyle, H. Ibrahim, Org. Lett. 2011, 13, 3142-
3145; e) M. Mulzer, B. T. Whiting, G. W. Coates, J. Am. Chem. Soc.
2013, 135, 10930-10933; f) A. K. Hubbell, A. M. LaPointe, J. R. Lamb,
G. W. Coates, J. Am. Chem. Soc. 2019, 141, 2474-2480.
In conclusion, we successfully developed a mild and highly
efficient catalyst system for the carbonylative ring expansion of
oxetane and thietane. Using Co2(CO)8 as the pre-catalyst, a
wide range of oxetanes and thietanes were transformed into the
corresponding γ-(thio)butyrolactone in good to excellent yields
under syngas atmosphere. The utility of this carbonylation
method in the construction of building block for drugs and
intermediate for natural products has been demonstrated. The
glycol-ether solvent plays a critical role in promoting HCo(CO)4
dissociation to [Co(CO)4]- and solvated proton, which
respectively are the active carbonylation catalyst and Brønsted-
acid-type oxetane/thietane activator.
[8]
a) H. Alper, F. Urso, J. Am. Chem. Soc. 1983, 105, 6738-6740. b) S.
Calet, F. Urso, H. Alper, J. Am. Chem. Soc. 1989, 111, 931-934. c) M.
E. Piotti, H. Alper, J. Am. Chem. Soc. 1996, 118, 111-116. d) P. Davoli,
I. Moretti, F. Prati, H. Alper, J. Org. Chem. 1999, 64, 518-521. e) F.
Fontana, G. C. Tron, N. Barbero, S. Ferrini, S. P. Thomas, V. K.
Aggarwal, Chem. Commun. 2010, 46, 267-269. f) W. Li, C. Liu, H.
Zhang, K. Ye, G. Zhang, W. Zhang, Z. Duan, S. You, A. Lei, Angew.
Chem. Int. Ed. 2014, 53, 2443-2446; Angew. Chem. 2014, 126, 2475-
2478.
[9]
a) M. Mulzer, W. C. Ellis, E. B. Lobkovsky, G. W. Coates, Chem. Sci.
2014, 5, 1928-1933; b) M. Mulzer, J. R. Lamb, Z. Nelson, G. W. Coates,
Chem. Commun. 2014, 50, 9842-9845.
Acknowledgements
[10] M. D. Wang, S. Calet, H. Alper, J. Org. Chem. 1989, 54, 20-21.
[11] a) Y. D. Y. L. Getzler, V. Kundnani, E. B. Lobkovsky, G. W. Coates, J.
Am. Chem. Soc. 2004, 126, 6842-6843; b) J. Jiang, S. Yoon, J. Mater.
Chem. A 2019, 7, 6120-6125.
We acknowledge start-up funds from ECNU. The computational
work was financially supported by the National Natural Science
Foundation of China (Nos. 21903049 and 21802151 for X.T. and
C.S.).
[12] a) F. Hebrard, P. Kalck, Chem. Rev. 2009, 109, 4272-4282; b) R. F.
Heck, J. Am. Chem. Soc. 1963, 85, 1460-1463.
[13] a) D. Milstein, J. L. Huckaby, J. Am. Chem. Soc. 1982, 104, 6150-6152;
b) D. Milstein, Acc. Chem. Res. 1988, 21, 428-434; c) L. T. Mika, R.
4
This article is protected by copyright. All rights reserved.