10.1002/cctc.202000228
ChemCatChem
COMMUNICATION
Based on these findings, to demonstrate the utility of the
developed system, the methodology was further extended to
late-stage functionalization of steroid-based molecules which are
versatile motifs in the natural products. Though challenging, the
catalytic system impressively demonstrated the reduction of
natural products such as stanolone, 16-dehydropregnenolone
acetate, pentoxifylline and carvone (2ar-2au). These results
strongly suggest that the developed methodology offers great
opportunities for the medicinal application which is undoubtedly
is of central importance.
required). The catalytic system we have developed
demonstrated high chemoselectivity, does not require any
additional organic solvent or special equipments etc. Further
improvements in the catalytic reaction as well as catalytic
reduction of other functional groups are currently underway in
our laboratory.
Acknowledgements
To gain more insight into the dehydrogenation pathways of
methanol, transfer hydrogenation of acetophenone was
repeated in deuterated methanol (CD3OD) which resulted in the
corresponding 56% deuterium incorporated alcohol as shown by
1H NMR implying that methanol acts as LOHC (Scheme 3a).
Next, we carried out the reaction with HCO2Na as hydrogen
donor in the absence of methanol provided the expected product
in 75% yield (Scheme 3b). However, no reaction was observed
when paraformaldehyde was used as a hydrogen source under
the neat conditions. These control experiments suggest that the
in situ-formed aldehyde perhaps convert immediately into
formate in the presence of base that subsequently acts as
hydrogen donor for the reduction of ketones (Scheme 3c). Under
the given conditions, lowering the catalyst concentration to 0.005
mmol results to 55% yield, leading to the turnover number (TON)
of 110 (Scheme 5d).
Financial Support provided by CEFIPRA (IF-5805-1) to carry out
this work is gratefully acknowledged. NG and SP thanks to CSIR
for their fellowship. PK Kelkar Young Faculty Award to BS is
gratefully acknowledged.
Keywords: Dehydrogenation of Methanol • Iridium • Ketones •
Secondary Alcohols • Transfer Hydrogenation
[1]
a) D. R. Palo, R. A. Dagle, J. D. Holladay, Chem. Rev. 2007, 107,
3992; b) M. M. Stocker, Microporous Mesoporous Mater. 1999, 29, 3; c)
F. J. Keil, Microporous Mesoporous Mater. 1999, 29, 49; d) Z. M. Liu, C.
L. Sun, G. W. Wang, Q. X. Wang, G. Y. Cai, Fuel Process. Technol.
2000, 62, 161; e) U. Olsbye, M. Bjorgen, S. Svelle, K. P. Lillerud, S.
Kolboe, Catal. Today 2005, 106, 108; f) J. F. Haw, W. G. Song, D. M.
Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317; g) R. Mythili, P.
Venkatachalam, P. Subramanian, D. Uma, Int. J. Energy Res. 2014, 38,
1233; h) C. M. Thomas, G. Suss-Fink, Coord. Chem. Rev. 2003, 243,
125.
[2]
a) G. A. Olah, A. Goeppert, S. G. K. Prakash, Beyond Oil and Gas: The
Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006. b) G. A.
Olah, Angew. Chem., Int. Ed. 2013, 52, 104; c) G. A. Olah, Angew.
Chem., Int. Ed. 2005, 44, 2636.
[3]
[4]
[5]
a) C. E. Taylor, B. H. Howard, C. R. Myers, Ind. Eng. Chem. Res. 2007,
46, 8906; b) Y. Shen, Y. Zhan, S. Li, F. Ning, Y. Du, Y. Huang, T. He, X.
Zhou, Chem. Sci. 2017, 8, 7498.
a) R. González-Gil, C. Herrera, M. Á. Larrubia, P. Kowalik, I. S. Pieta, L.
J. Alemany, Int. J. Hydrogen Energy 2016, 41, 19781; b) F. Wang, G.
Wang, Int. J. Hydrogen Energy 2016, 41, 16835.
a) S. Sá, H. Silva, L. Brandão, J. M. Sousa, A. Mendes, Appl. Catal. B
2010, 99, 43. Also see, b) D. Wang, D. Astruc, Chem.
Rev. 2015, 115, 6621 and references therein.
[6]
[7]
F. Ahmadi, M. Haghighi, H. Ajamein, J. Mol. Catal. A: Chem. 2016, 421,
196.
a) S. Shinoda, H. Itagaki, Y. Saito, J. Chem. Soc., Chem. Commun.
1985, 860; b) H. Itagaki, Y. Saito, S. Shinoda, J. Mol. Catal. 1987, 41,
209−220; c) K. Makita, K. Nomura, Y. Saito, J. Mol. Catal. 1994, 89,
143−150; d) L. C. Yang, T. Ishida, T. Yamakawa, S. Shinoda, J. Mol.
Catal. A: Chem. 1996, 108, 87.
[8]
[9]
M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S.
Gladiali, M. Beller, Nature 2013, 495, 85.
R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-
Quinones, H. Grützmacher, Nat. Chem. 2013, 5, 342.
[10] P. Hu, Y. Diskin-Posner, Y. Ben-David, D. Milstein, ACS Catal. 2014, 4,
2649.
Scheme 3. Preliminary Mechanistic Investigations.
[11] a) K.-I. Fujita, R. Kawahara, T. Aikawa, R. Yamaguchi, Angew. Chem.,
Int. Ed. 2015, 54, 9057; also for dehydrogenation of alcohols see, b) K.
Fujita, N. Tanino, R. Yamaguchi, Org. Lett. 2007, 9, 109; c) K. Fujita, T.
Yoshida, Y. Imori, R. Yamaguchi, Org. Lett. 2011, 13, 2278; d) R.
Kawahara, K. Fujita, R. Yamaguchi, J. Am. Chem. Soc. 2012, 134,
3643; e) R. Kawahara, K. Fujita, R. Yamaguchi, Angew. Chem., Int. Ed.
2012, 51, 12790; Angew. Chem., Int. Ed. 2012, 124, 12962; f) G. Zeng,
S. Sakaki, K. Fujita, H. Sano, R. Yamaguchi, ACS Catal. 2014, 4, 1010;
g) Y. M. Badiei, W.-H. Wang, J. F. Hull, D. J. Szalda, J. T. Muckerman,
Y. Himeda, E. Fujita, Inorg. Chem. 2013, 52, 12576.
In conclusion, we demonstrate an efficient homogeneous
iridium-catalyzed transfer hydrogenation of ketones using
methanol as a hydrogen source.[21] The protocol is highly
efficient, economical and green alternative to all methodologies
that involve harsh reaction conditions/hazardous reducing
agents. The key to the success of the described catalytic system
is the well-defined metal-ligand system that works well under
moderately basic conditions (only catalytic amount of base
[12] R. H. Crabtree, Chem. Rev. 2017, 117, 9228.
[13] a) R. A. W. Johnstone, A. H. Wilby, I. D. Entwistle, Chem. Rev. 1985,
85, 129; b) N. M. Yoon, Pure Appl. Chem. 1996, 68, 843.
4
This article is protected by copyright. All rights reserved.