Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC00103G
COMMUNICATION
Journal Name
Scheme 3. Proposed Mechanism
3
4
(a) P. Rongved, G. Kirsch, Z. Bouaziz, J. Jose and M. Le
Borgne, Eur. J. Med. Chem., 2013, 69, 465; (b) W.
Maneerat, T. Ritthiwigrom, S. Cheenpracha, U. Prawat and S.
Laphookhieo, Tetrahedron Lett., 2011, 52, 3303; (c) S. B.
Markad and N. P. Argade, J. Org. Chem., 2016.
(a) N. H. Krishna, A. P. Saraswati, M. Sathish, N. Shankaraiah
and A. Kamal, Chem. Commun., 2016; (b) M. F. Martínez-
Esperón, D. Rodríguez, L. Castedo and C. Saá, Org. Lett.,
2005, 7, 2213.
(a) V. Dhayalan, J. A. Clement, R. Jagan and A. K.
Mohanakrishnan, Eur. J. Org. Chem., 2009, 2009, 531; (b) J.
K. Laha and N. Dayal, Org. Lett., 2015, 17, 4742.
(a) T. Tsuchimoto, H. Matsubayashi, M. Kaneko, Y. Nagase,
5
6
T. Miyamura and E. Shirakawa, J. Am. Chem. Soc., 2008, 130
15823; (b) X. Zheng, L. Lv, S. Lu, W. Wang and Z. Li, Org.
Lett., 2014, 16, 5156.
,
7
8
9
(a) M. E. Budén, V. A. Vaillard, S. E. Martin and R. A. Rossi, J.
Org. Chem., 2009, 74, 4490; (b) C. Schuster, M. Rönnefahrt,
K. K. Julich-Gruner, A. Jäger, A. W. Schmidt and H.-J. Knölker,
Synthesis, 2016, 48, 150.
(a) B. J. Stokes, B. Jovanović, H. Dong, K. J. Richert, R. D. Riell
and T. G. Driver, J. Org. Chem., 2009, 74, 3225; (b) B. J.
substitution showed an adverse effect on the cyclization (3j
and 3k, respectively, 65% and 70%). When two negative
factors, electron-withdrawing group and tether substitution
were combined, the efficiency of the tandem reaction further
decreased (3l, 49%). In addition, we investigated the impact of
the functional groups adjacent to the diazo group. Ketone and
amide groups were well tolerated to afford the corresponding
carbazoles with high yields (3m and 3n, 78% and 79%).
Phosphonate gave 3o with slightly diminished but synthetically
useful yield (72%). Lastly, biaryl aniline 1p smoothly reacted to
give N-aryl substituted carbazole 3p (50%).
Stokes, K. J. Richert and T. G. Driver, J. Org. Chem., 2009, 74
6442.
,
(a) S. H. Cho, J. Yoon and S. Chang, J. Am. Chem. Soc., 2011,
133, 5996; (b) S. W. Youn, J. H. Bihn and B. S. Kim, Org. Lett.,
2011, 13, 3738.
10 (a) J. H. Kim, S. Y. Choi, J. Bouffard and S.-g. Lee, J. Org.
Chem., 2014, 79, 9253; (b) J. Um, H. Yun and S. Shin, Org.
Lett., 2016, 18, 484.
11 (a) J. Mo, D. Kang, D. Eom, S. H. Kim and P. H. Lee, Org. Lett.,
2013, 15, 26; (b) A. M. Asiri and A. S. Hashmi, Chem. Soc.
Rev., 2016, 45, 4471; (c) M. Bandini, Chem. Soc. Rev., 2011,
40, 1358.
12 (a) H.-S. Yeom, Y. Lee, J.-E. Lee and S. Shin, Org. Biomol.
Chem., 2009, 7, 4744; (b) R. Dorel and A. M. Echavarren,
Chem. Rev., 2015, 115, 9028.
13 (a) E. Chong and S. A. Blum, J. Am. Chem. Soc., 2015, 137
Mechanistically, the formation of carbazoles from diazo
anilinoalkyne is proposed to begin with gold-mediated
hydroamination of anilinoalkyne
3). Subsequent activation of the diazo group of
formation of copper carbene, which undergoes electrophilic
1
to form indole
2 (Scheme
2
results in the
,
10144; (b) I. Nakamura, U. Yamagishi, D. Song, S. Konta and
Y. Yamamoto, Angew. Chem. Int. Ed., 2007, 46, 2284.
cyclization with the indole moiety to afford carbazole
oxidation.
3 after
14 (a) Y. Jiang, V. Z. Y. Khong, E. Lourdusamy and C.-M. Park,
Chem. Commun., 2012, 48, 3133; (b) N. S. Y. Loy, S. Choi, S.
Kim and C.-M. Park, Chem. Commun., 2016; (c) N. S. Y. Loy,
S. Kim and C.-M. Park, Org. Lett., 2015, 17, 395; (d) Y. Jiang
In sum, we have successfully developed efficient synthesis
of carbazoles employing diazo anilinoalkynes as substrates
based on gold copper tandem catalysis. Each of the two
catalysts promotes sequential activation of the orthogonal
functionalities, alkynyl and diazo groups, resulting in the
formation of carbazoles via indoles as the intermediates. This
method has proven to offer a valuable synthetic tool for
carbazoles featuring a broad substrate scope.
and C.-M. Park, Chem. Sci., 2014, 5, 2347; (e) N. S. Y. Loy,
A. Singh, X. Xu and C.-M. Park, Angew. Chem. Int. Ed., 2013,
52, 2212; (f) Y. Jiang, W. C. Chan and C.-M. Park, J. Am.
Chem. Soc., 2012, 134, 4104; (g) X. Qi, L. Dai and C.-M. Park,
Chem. Commun., 2012, 48, 11244; (h) X. Qi, X. Xu and C.-
M. Park, Chem. Commun., 2012, 48, 3996; (i) X. Qi, Y.
Jiang and C.-M. Park, Chem. Commun., 2011, 47, 7848; (j) E.
This work was supported by the National Research
Foundation of Korea (NRF) grants (2014-011165, Center for
New Directions in Organic Synthesis (CNOS), NRF-
2014R1A2A2A01006060) funded by the Korean government
and UNIST (Ulsan National Institute of Science & Engineering)
Research Fund (1.170014.01).
Lourdusamy, L. Yao and C.-M. Park, Angew. Chem., 2010, 49
7963.
,
15 (a) J. He, Y. Shi, W. Cheng, Z. Man, D. Yang and C. Y. Li,
Angew. Chem. Int. Ed., 2016, 55, 4557; (b) V. V. Pagar and
R. S. Liu, Angew. Chem. Int. Ed., 2015, 54, 4923.
16 (a) Y. Qiu, W. Kong, C. Fu and S. Ma, Org. Lett., 2012, 14
6198; (b) B. Alcaide, P. Almendros, J. M. Alonso, E. Busto, I.
,
Fernández, M. P. Ruiz and G. Xiaokaiti, ACS Catal., 2015, 5,
3417.
17 (a) B. Alcaide, P. Almendros, J. M. Alonso, S. Cembellin, I.
Fernandez, T. M. del Campo and M. R. Torres, Chem.
Notes and references
1
(a) Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J.
Qin and D. Ma, Angew. Chem. Int. Ed., 2008, 47, 8104; (b) J.
V. Grazulevicius, P. Strohriegl, J. Pielichowski and K.
Pielichowski, Prog. Polym. Sci., 2003, 28, 1297.
Commun., 2013, 49, 7779; (b)
B. Guo, X. Huang, C. Fu and
S. Ma, Chemistry – A European Journal, 2016, 22, 18343.
18 The structure of the dihydrocarbazole corresponding to 3a
has been confirmed by NMR (see the supplementary
information).
2
(a) T. A. Choi, R. Czerwonka, W. Fröhner, M. P. Krahl, K. R.
Reddy, S. G. Franzblau and H.-J. Knölker, ChemMedChem,
2006, 1, 812; (b) A. W. Schmidt, K. R. Reddy and H.-J.
Knölker, Chem. Rev., 2012, 112, 3193.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins