Biochemistry
Article
for induction of Chitinase production in Streptomyces coelicolor A3(2).
Microbiology 154, 3358−3365.
substrate specificity of a novel β-N-acetylhexosaminidase StrH protein
from Streptococcus pneumoniae R6. J. Biol. Chem. 286, 43004−43012.
(42) Prag, G., Papanikolau, Y., Tavlas, G., Vorgias, C. E., Petratos, K.,
and Oppenheim, A. B. (2000) Structures of chitobiase mutants
complexed with the substrate di-N-acetyl-D-glucosamine: the catalytic
role of the conserved acidic pair, aspartate 539 and glutamate 540. J.
Mol. Biol. 300, 611−617.
(43) Suginta, W., Chuenark, D., Mizuhara, M., and Fukamizo, T.
(2010) Novel β-N-acetylglucosaminidases from Vibrio harveyi 650:
cloning, expression, enzymatic properties, and subsite identification.
BMC Biochem. 11, 40 DOI: doi:10.1186/1471-2091-11-40.
(44) Robbins, P., Overbye, K., Albright, C., Benfield, B., and Pero, J.
(1992) Cloning and high-level expression of Chitinase-encoding gene
of Streptomyces plicatus. Gene 111, 69−76.
(
23) Saito, A., Miyashita, K., Biukobic, G., and Schrempf, H. (2001)
Characteristics of a Streptomyces coelicolor A3(2) extracellular protein
targeting chitin and chitosan. Appl. Environ. Microbiol. 67, 1268−1273.
(
24) Hoell, I. A., Dalhus, B., Heggset, E. B., Aspmo, S. I., and Eijsink,
V. G. H. (2006) Crystal structure and enzymatic properties of a
bacterial family 19 Chitinase reveal differences from plant enzymes.
FEBS J. 273, 4889−4900.
(
25) Heggset, E. B., Hoell, I. A., Kristoffersen, M., Eijsink, V. G. H.,
and Varum, K. M. (2009) Degradation of chitosans with Chitinase G
̊
from Streptomyces coelicolor A3(2): production of chito-oligosacchar-
ides and insight into subsite specificities. Biomacromolecules 10, 892−
899.
(
26) Caufrier, F., Martinou, A., Dupont, C., and Bouriotis, V. (2003)
(45) Gomes, J. E., Souza, D. S. L., Nascimento, R. M., Lima, A. L. M.,
Melo, J. A. T., Rocha, T. L., Miller, R. N. G., Franco, O. L., Grossi-de-
Sa, M. F., and Abreu, L. R. D. (2010) Purification and characterization
of a liver-derived β-N-acetylhexosaminidase from marine mammal
Sotalia fluviatilis. Protein J. 29, 188−194.
Carbohydrate esterase family 4 enzymes: substrate specificity.
Carbohydr. Res. 338, 687−692.
(
27) Hurtubise, Y., Shareck, F., Kluepfel, D., and Morosoli, R. (1995)
A cellulase/xylanase-negative mutant of Streptomyces lividans 1326
defective in cellobiose and xylobiose uptake is mutated in a gene
encoding a protein homologous to ATP-binding proteins. Mol.
Microbiol. 17, 367−377.
(46) Kubota, T., Miyamoto, K., Yasuda, M., Inamori, Y., and Tsujibo,
H. (2004) Molecular characterization of an intracellular β-N-
acetylglucosaminidase involved in the chitin degradation system of
Streptomyces thermoviolaceus OPC-520. Biosci. Biotechnol. Biochem. 68,
(
28) Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Vruton,
1
306−1314.
47) Plíhal, O., Sklenar
Pompach, P., Kavan, D., Ryslava,
Pisvejcova, A., Kren, V., and Bezouska, K. (2007) Large propeptides of
C. J., Kieser, H. M., Lydiate, D. J., Smith, C. P., and Ward, J. M. (1985)
Genetic manipulation of StreptomycesA Laboratory Manual, The John
Innes Foundation, Norwich, U.K.
(
́
, J., Hofbauerova,
́
K., Novak
́
, P., Man, P.,
ova-
́
H., Weignerova,
́
L., Charvat
́
́
́
(
29) Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease,
fungal β-N-acetylhexosaminidases are novel enzyme regulators that
must be intracellularly processed to control activity, dimerization, and
secretion into the extracellular environment. Biochemistry 46, 2719−
L. R. (1989) Site-directed mutagenesis by overlap extension using the
polymerase chain. Gene 77, 51−59.
(
Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G.
W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S.
30) Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J.,
2
734.
(48) Ghosh, S., Meli, V. S., Kumar, A., Thakur, A., Chakraborty, N.,
Chakraborty, S., and Datta, A. (2011) The N-glycan processing
enzymes alpha-mannosidase and beta-D-N-acetylhexosaminidase are
involved in ripening-associated softening in the non-climacteric fruits
of capsicum. J. Exp. Bot. 62, 571−582.
(
2011) Overview of the CCP4 suite and current developments. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 67, 235−242.
31) McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M.
(
(49) Keyhani, N. O., and Roseman, S. (1996) The chitin catabolic
D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic
software. J. Appl. Crystallogr. 40, 658−674.
(
Features and development of Coot. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 66, 486−501.
(
Refinement of macromolecular structures by the maximum-likelihood
method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240−255.
(
cascade in the marine bacterium Vibrio furnissii: molecular cloning,
isolation, and characterization of a periplasmic β-N-acetylglucosami-
nidase. J. Biol. Chem. 271, 33425−33432.
32) Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010)
(50) Hammes, G. G., Chang, Y. C., and Oas, T. G. (2009)
Conformational selection or induced fit: a flux description of reaction
33) Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997)
mechanism. Proc. Natl. Acad. Sci. U.S.A. 106, 13737−13741.
(51) Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S.,
Paern, J., and Lopez, R. (2010) A new bioinformatics analysis tools
34) Gutternigg, M., Kretschmer-Lubich, D., Paschinger, K., Rendic,
framework at EMBL-EBI. Nucleic Acids Res. 38, W695−699.
D., Hader, J., Geier, P., Ranftl, R., Jantsch, V., Lochnit, G., and Wilson,
I. B. (2007) Biosynthesis of truncated N-linked oligosaccharides
results from non-orthologous hexosaminidase-mediated mechanisms
in nematodes, plants, and insects. J. Biol. Chem. 282, 27825−27840.
(52) Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan,
K., Emsley, P., Murshudov, G. N., Cohen, S., Perrakis, A., and Noble,
M. (2011) Developments in the CCP4 molecular-graphics project.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2288−2294.
(
35) He, Y., Macauley, M. S., Stubbs, K. A., Vocadlo, D. J., and
(53) Konno, N., Takahashi, H., Nakajima, M., Takeda, T., and
Davies, G. J. (2010) Visualizing the reaction coordinate of an O-
(
Sakamoto, Y. (2012) Characterization of β-N-acetylhexosaminidase
LeHex20A), a member of glycoside hydrolase family 20, from
Lentinula edodes (shiitake mushroom). AMB Express 2, 29.
54) Katta, S., Ankati, S., and Podile, A. R. (2013) Chitooligo-
(
coside Hydrolase family classification.
37) Henrissat, B., and Bairoch, A. (1993) New families in the
(
(
saccharides are converted to N-acetylglucosamine by N-acetyl-β-
hexosaminidase from Stenotrophomonas maltophilia. FEMS Microbiol.
Lett. 348, 19−25.
classification of glycosyl hydrolases based on amino acid sequence
similarities. Biochem. J. 293, 781−788.
(
38) Henrissat, B., and Bairoch, A. (1996) Updating the sequence-
based classification of glycosyl hydrolases. Biochem. J. 316, 695−696.
39) Sumida, T., Ishii, R., Yanagisawa, T., Yokoyama, S., and Ito, M.
2009) Molecular cloning and crystal structural analysis of a novel β-
(
(
N-acetylhexosaminidase from Paenibacillus sp. TS12 capable of
degrading glycosphingolipids. J. Mol. Biol. 392, 87−99.
(
40) Intra, J., Pavesi, G., and Horner, D. S. (2008) Phylogenetic
analyses suggest multiple changes of substrate specificity within the
glycosyl hydrolase 20 family. BMC Evol. Biol. 8, 214
DOI: doi:10.1186/1471-2148-8-214.
(
41) Jiang, Y. L., Yu, W. L., Zhang, J. W., Frolet, C., Guilmi, A. M. D.,
Zhou, C. Z., Vernet, T., and Chen, Y. (2011) Structural basis for the
1
800
dx.doi.org/10.1021/bi401697j | Biochemistry 2014, 53, 1789−1800