PAPER
Improved Synthesis of 3-Fluorothiophene
2335
moved with a rotary evaporator to produce white crystals (0.7 g).
TLC showed this to be a mixture of many compounds.
[Lit.24 13C NMR (CDCl3): d = 158.5 (d, J = 257.5 Hz), 124.8 (d,
J = 9.2 Hz), 117.3 (d, J = 26.9 Hz), 103.2 (d, J = 21.1 Hz)].
19F NMR (CDCl3/CFCl3): d = –119.01 (d, J = 4.6 Hz), –119.03 (d,
J = 4.6 Hz).
19F NMR (CDCl3/CFCl3): d = –131.0 (d, J = 2.3 Hz) [Lit.24 19F
NMR (CDCl3/CFCl3): d = –131.0 (d, J = 3.2 Hz)].
Methyl 3-Fluorothiophene-2-carboxylate (2)20
Acknowledgment
A mixture of 2-methoxycarbonylthiophene-3-diazonium tetrafluo-
roborate (3;19 15.4 g, 0.060 mol) and sand (80 g) in a round-bot-
tomed flask was attached to a distilling head connected to another
round-bottomed flask and a Dewar type condenser cooled with liq-
uid N2. The mixture was heated and when the temperature reached
160 °C (oil-bath temperature) under vacuum (0.1 Torr), the product
3 sublimed and was trapped on the inner surface of the condenser;
then at ca. 200 °C a pale yellow liquid distilled and solidified in the
round-bottomed flask. The products inside the condenser and the
round-bottomed flask were combined and this was washed repeat-
edly with MeOH until it all dissolved. The product 2 was collected
as a pale yellow solid upon the addition of H2O (15 mL). The prod-
uct was filtered and air dried to give 6.4 g (67%) of 2; mp 48–50 °C
(Lit.20 mp 51–53 °C).
1H NMR (CDCl3): d = 7.42 (dd, J = 5.5 Hz, JH,F = 3.8 Hz, 1 H), 6.86
(d, J = 5.5 Hz, 1 H), 3.89 (s, 3 H) [Lit.20 1H NMR (CDCl3): d = 7.42
(dd, J = 5.5, 3.8 Hz, 1 H), 6.85 (dd, J = 5.5, 0.5 Hz, 1 H), 3.89 (s, 3
H)].
13C NMR (CDCl3): d = 160.9 (d, JC,F = 3.8 Hz), 160.2 (d,
1JC,F = 276.4 Hz) 130.1 (d, JC,F = 10.5 Hz), 118.5 (d, JC,F = 24.9
Hz), 112.5 (d, JC,F = 10.1 Hz), 51.9 (s) [Lit.20 13C NMR (CDCl3):
d = 161.8 (C-3), 130.0 (C=O), 129.9 (C-5), 118.5 (C-4), 118.1 (C-
2), 51.9 (OCH3)].
The authors would like to thank Hai Minh Le and Linh M. Ly for
their valuable help and the Robert A. Welch Foundation (Grant Y-
1407) for financial support.
References
(1) Kassmi, A. E.; Fache, F.; Lemaire, M. J. Electroanal. Chem.
1994, 373, 241.
(2) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem.
Soc. 2005, 127, 16866.
(3) Irvin, D. J.; Witker, D. L.; Closson, A. P.; Stenger-Smith, J.
D.; Irvin, J. A. Polym. Prepr. (Am. Chem. Soc., Div. Polym.
Chem.) 2008, 49, 552.
(4) Kuraki, Y.; Funatsu, E. Jpn. Kokai Tokkyo Koho JP
02282246, 1990; Chem. Abstr. 1991, 115, 123751.
(5) Raos, G.; Famulari, A.; Meille, S. V.; Gallazzi, M. C.;
Allegra, G. J. Phys. Chem. A 2004, 108, 691.
(6) Parry, D. R.; Matthews, I. R.; Mitchell, G.; Williams, A. G.;
Barnes, N. J.; Cox, J. M.; Gillen, K. J.; Ensminger, M. P.;
Khodayari, K.; Nakayama, H. Int. Patent WO 2000021928,
2000; Chem. Abstr. 2000, 132, 293663.
(7) Miyata, J.; Yokota, M.; Naito, R.; Kamikawa, A.;
Kawakami, M.; Hattori, K. Int. Patent Appl. WO
2006022375, 2005; Chem. Abstr. 2006, 144, 253996.
(8) White, J. F.; Shiosaki, K.; Hangauer, D. G.; Solomon, M.;
Edgar, D. M. Int. Patent Appl. WO 2007022068, 2006;
Chem. Abstr. 2007, 146, 244376.
19F NMR (CDCl3/CFCl3) (H-coupled): d = – 115.4 (d, J = 3.5 Hz)
[Lit.20 19F NMR (CDCl3/CFCl3): d = – 115.4 (d, J = 3.7 Hz)].
Anal. Calcd for C6H5FO2S: C, 44.99; H, 3.15. Found: C, 44.75; H,
3.00.
(9) Balz, G.; Schiemann, G. Ber. Dtsch. Chem. Ges. 1927, 60,
1186.
(10) VanVleck, T. R. J. Am. Chem. Soc. 1949, 71, 3256.
(11) Flood, D. T. Org. Synth. Coll. Vol. II; Wiley: New York,
1943, 295.
(12) Rodmar, S.; Rodmar, B.; Sharma, M.; Gronowitz, S.;
Christiansen, H.; Rosen, R. Acta Chem. Scand. 1968, 22,
907.
(13) Peet, J. H. J.; Rockett, B. W. J. Organomet. Chem. 1974, 82,
C57.
3-Fluorothiophene-2-carboxylic Acid (4)
This compound was prepared from 3 in 84% yield as described in
the literature.19
1H NMR (CDCl3): d = 10.7 (br s, 1 H),7.52 (dd, J = 5.5 Hz,
J
H,F = 3.8 Hz, 1 H), 6.85 (d, J = 5.5 Hz, 1 H) [Lit.23 1H NMR
(CDCl3): d = 10.7 (s), 7.53 (dd, J = 5.5, 3.6 Hz), 6.90 (d, J = 5.4
Hz); Lit.24 1H NMR (CDCl3): d = 7.85 (dd, J = 5.5, 4.2 Hz), 7.12 (d,
J = 5.4 Hz)].
(14) Adcock, W.; Khor, T. C. J. Organomet. Chem. 1975, 91,
C20.
(15) Glinski, M. B.; Freed, J. C.; Durst, T. J. Org. Chem. 1987,
52, 2749.
(16) Crestoni, M. E.; Fornarini, S. Gazz. Chim. Ital. 1989, 119,
203.
(17) Crestoni, M. E. J. Labelled Compd. Radiopharm. 1990, 28,
1109.
(18) Cerichelli, G.; Crestoni, M. E.; Fornarini, S. Gazz. Chim.
Ital. 1990, 120, 749.
(19) Corral, C.; Lasso, A.; Lissavetzy, J.; Insua, A.;
Valdeolmillos, A. Heterocycles 1985, 23, 1431.
(20) Kobarfard, F.; Kauffman, M.; Boyko, W. J. Heterocycl.
Chem. 1999, 36, 1247.
(21) Taylor, E. C.; Zhou, P. Org. Prep. Proced. Int. 1997, 29,
221.
(22) Kiryanov, A.; Seed, A.; Sampson, P. Tetrahedron Lett.
3-Fluorothiophene (1)
The decarboxylation of 3-fluorothiophene-2-carboxylic acid (4)
was carried out similar to a reported substituted thiophenecarboxy-
lic acid decarboxylation.25 3-Fluorothiophene-2-carboxylic acid (4;
1.68 g, 80 mmol) was dissolved in quinoline (10 mL) in a single-
necked round-bottomed flask connected to a distillation apparatus.
Barium-promoted copper chromite (1.24 g, 40 mmol) was added to
the solution and the temperature was raised to 200 °C (oil-bath).
The highly volatile product 1 was distilled at 30–32 °C (distilling
head temperature) and collected in a cold receiver (ice-bath); yield:
1
0.80 g (93%). Based on integration of the vertically expanded H
NMR spectrum the purity can be estimated as >97% (Figure 1).
1H NMR (CDCl3): d = 7.17 (dt, J = 5.4, 3.4 Hz, 1 H), 6.83 (ddd,
J = 5.4, 1.5 Hz, 0.9 Hz, 1 H), 6.69 (ddd, J = 3.4, 1.5, 1.1 Hz, 1 H)
[Lit.24 1H NMR (CDCl3): d = 7.15 (ddd, J = 5.4, 3.4, 3.4 Hz, 1 H),
6.85 (ddd, J = 5.5, 2.4, 1.1 Hz, 1 H), 6.70 (ddd, J = 3.4, 2.4, 1.1 Hz,
1 H)].
13C NMR (CDCl3): d = 158.5 (d, JC,F = 257.7 Hz), 124.8 (d,
JC,F = 9.1 Hz), 117.2 (d, JC,F = 26.9 Hz), 103.1 (d, JC,F = 21.1 Hz)
2001, 42, 8797.
1
(23) Foister, S.; Marques, M.; Doss, R.; Dervan, P. Bioorg. Med.
Chem. 2003, 11, 4333.
Synthesis 2008, No. 15, 2333–2336 © Thieme Stuttgart · New York