4
. Conclusion
10 V. L. Solozhenko and V. Z. Turkevich, J. Phys. Chem. B, 1999, 103,
8
137.
1
1
1
1 S. K. Singhal and J. K. Park, J. Cryst. Growth, 2004, 260, 217.
2 H. Lorenz and I. Orgzall, Diamond Relat. Mater., 1995, 4, 1046.
3 V. Turkevich, T. Taniguchi, A. Andreev and P. Itsenko, Diamond Relat.
Mater., 2004, 13, 64.
cBN is prepared by a low-temperature solid state synthesis and
in situ phase transformation route, and the cBN concentration
in the BN sample has been greatly increased by utilizing two
new strategies, i.e., applying pressure onto the reactants during
the reaction process and introducing the structural induction
14 J. Gijnna, H. J. Meurer, G. Nover, T. Peun, D. Schiinbohm and G. Will,
Mater. Lett., 1998, 33, 321.
5 X. C. Wang, X. P. Jia, T. C. Zhang, G. Z. Ren, H. J. Liu, C. Y. Zang, P.
W. Zhu, H. A. Ma and G. T. Zou, Diamond Relat. Mater., 2003, 12, 57.
1
effect. Finally, almost pure cBN sample is synthesized by reacting
◦
NH
4
BF
4
and NaN
3
at 250 C. In fact, the conventional solid state
16 M. M. Bindal, B. P. Singh, S. K. Singhal, R. K. Nayar and R. Chopra,
J. Cryst. Growth, 1994, 144, 97.
route is generally regarded as a facile and convenient route to
synthesize hBN or tBN, and it is rather difficult to prepare cBN
by this method. However, the modified solid state route reported
in this paper has been proved to be very effective for increasing
the relative content of cBN, but the actual yield of cBN is not
high. It is reasonable to believe that, by applying these strategies
and optimizing the preparation parameters, pure cBN will be
synthesized with high yield soon.
1
1
7 J. Y. Huang and Y. T. Zhu, Chem. Mater., 2002, 14, 1873.
8 V. L. Solozhenko, V. Z. Turkevich and G. Will, High Press. Res., 1996,
1
0, 135.
19 E. G. Gillan and R. B. Kaner, Chem. Mater., 1996, 8, 333.
2
2
0 L. Rao and R. B. Kaner, Inorg. Chem., 1994, 33, 3210.
1 V. L. Solozhemko, V. Z. Turkevich and G. Will, J. Am. Ceram. Soc.,
1
996, 79, 2798.
22 J. H. Ma, J. Li, G. X. Li, Y. G. Tian, J. Zhang, J. F. Wu, J. Y. Zheng, H.
M. Zhuang and T. H. Pan, Mater. Res. Bull., 2007, 42, 982.
3 C. H. Wallace, S. H. Kim, G. A. Rose, L. Rao, J. R. Heath, M. Nicol
2
and R. B. Kaner, Appl. Phys. Lett., 1998, 72, 596.
24 J. L. O’Loughlin, C. H. Wallace, M. S. Knox and R. B. Kaner, Inorg.
Chem., 2001, 40, 2240.
Acknowledgements
This work was supported financially by the Natural Science
Foundation of China (50672048, 21073107, 50990061), the China
Postdoctoral Science Foundation (20100481245), the Foundation
of Shandong Science & Technology Council (2008GG30003008),
Postdoctoral Innovation Foundation of Shandong Province
25 A. Spiesser, Y. M. Chong, K. M. Leung, G. Abel, G. G. Ross, M. J.
Walzak, R. Jachlin, W. M. Lau, W. J. Zhang and I. Bello, J. Phys. Chem.
C, 2007, 111, 12768.
2
2
2
6 X. W. Zhang, H. G. Boyen, N. Deyneka, P. Ziemann, F. Banhart and
M. Schreck, Nat. Mater., 2003, 2, 312.
7 W. J. Zhang, I. Bello, Y. Lifshitz, K. M. Chan, X. M. Meng, Y. Wu, C.
Y. Chan and S. T. Lee, Adv. Mater., 2004, 16, 1405.
8 D. D. Nataliya, U. Herr, H. J. Fecht, X. W. Zhang, H. Yin, H. G. Boyen
and P. Ziemann, Adv. Eng. Mater., 2008, 10, 482.
(
201003077), Independent Innovation Foundation of Shandong
University (11250070611039) and Postdoctor Foundation of
Shandong University (10000080962080).
29 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bemben, Handbook
of X-ray Photoelectron Spectroscopy, Physical Electronics, Division,
Perkin-Elmer Corporation, 1992.
Notes and references
30 C. C. Tang, Y. Bando, Y. Huang, C. Y. Zhi and D. Golberg, Adv. Funct.
Mater., 2008, 18, 3653.
1
P. B. Mirkarimi, K. F. McCarty and D. L. Medlin, Mater. Sci. Eng., R,
997, 21, 47.
3
3
3
3
3
3
3
3
3
1 K. M. Leung, C. Y. Chan, Y. M. Chong, Y. Yao, K. L. Ma, I. Bello, W.
J. Zhang and S. T. Lee, J. Phys. Chem. B, 2005, 109, 16272.
1
2
3
I. Tsiaoussis and N. Frangis, J. Microsc., 2006, 223, 205.
J. Yu, Z. Zheng, H. C. Ong, K. Y. Wong, S. Matsumoto and W. M. Lau,
J. Phys. Chem. B, 2006, 110, 21073.
2 U. Vetter, P. Reinke, C. Ronning, H. Hofsass, P. Schaaf, K. Bharuth-
Ram and T. Taniguchi, Diamond Relat. Mater., 2003, 12, 1182.
3 B. E. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Model
of Inorganic Chemistry, 2nd Edition, Wiley, New York 1983.
4
5
6
7
8
O. Mishima, K. Era, J. Tanaka and S. Yamaoka, Appl. Phys. Lett.,
1
988, 53, 962.
4 K. S. Park, D. Y. Lee, K. J. Kim and D. W. Moon, Appl. Phys. Lett.,
O. Mishima, J. Tanaka, S. Yamaoka and O. Fukunaga, Science, 1987,
38, 181.
E. Knittle, R. M. Wentzcovitch, R. Jeanloz and M. L. Cohen, Nature,
989, 337, 349.
1
997, 70, 315.
2
5 L. D. Jiang, A. G. Fitzgerald, M. J. Rose, A. Lousa and S. Gimeno,
Surf. Interface Anal., 2002, 34, 732.
1
6 B. Angleraud, M. Cahoreau, I. Jauberteau, J. Aubreton and A.
Catherinot,, J. Appl. Phys., 1998, 83, 3398.
W. J. Zhang, X. M. Meng, C. Y. Chan, K. M. Chan, Y. Wu, I. Bello
and S. T. Lee, J. Phys. Chem. B, 2005, 109, 16005.
7 K. Nose, H. S. Yang, H. Oba and T. Yoshida,, Diamond Relat. Mater.,
J. B. MacNaughton, A. Moewes, R. G. Wilks, X. T. Zhou, T. K. Sham,
T. Taniguchi, K. Watanabe, C. Y. Chan, W. J. Zhang, I. Bello, S. T. Lee
and H. Hofsass, Phys. Rev. B, 2005, 72, 195113.
2
005, 14, 1960.
8 J. B. Lian, T. Kim, X. D. Liu, J. M. Ma and W. J. Zheng, J. Phys. Chem.
C, 2009, 113, 9135.
9
F. P. Bundy and R. H. Wentorf, J. Chem. Phys., 1963, 38,
9 C. H. L. Goodman, Crystal Growth Theory and Techniques, Plenum
Press-London-New York, 1974, Chapter 2.
1
144.
This journal is © The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 6961–6967 | 6967