594
J. Cota et al. / Biochemical and Biophysical Research Communications 406 (2011) 590–594
[9] O.J. Gaiser, K. Piotukh, M.N. Ponnuswamy, et al., Structural basis for the
substrate specificity of a Bacillus 1, 3–1, 4-beta-glucanase, J. Mol. Biol. 357
(2006) 1211–1225.
[10] M. Krah, R. Misselwitz, O. Politz, et al., The laminarinase from thermophilic
eubacterium Rhodothermus marinus conformation, Stability, and
identification of active site carboxylic residues by site-directed mutagenesis,
Eur. J. Biochem. 257 (1998) 101–111.
between CC2 and CBM3 (residues 459–486) is longer than the
linker between CBM1 and CC2 (residues 187–199). This feature
enables unambiguously to distinct the correct location of N- and
C-terminal CBM domains. Moreover, the linkers could act as hinges
permitting conformational changes required for substrate recogni-
tion and catalysis. This mobility is particularly evident in the CBM3-
containing arm in the SAXS model, where the average of different
positions resulted in a larger volume than expected from the
high-resolution model.
In conclusion, we evaluated the TpLam a specific endo b-1–3
acting glucanase with remarkable thermostable properties. The
study herein depicted enzymatic mode of attack, performed a com-
prehensive spectrometric analysis of hyperthermophilicity and
determined the low- resolution structure of a multi-domain V-
shape enzyme bearing two carbohydrate-binding modules. Our
findings provide biochemical and structural basis for further stud-
ies of endo-b-1,3-glucanases, which are important components of
enzymatic repertory in polysaccharide degradation with many bio-
technological applications.
[11] F.M. Squina, C.R. Santos, D.A. Ribeiro, et al., Substrate cleavage pattern,
biophysical characterization and low-resolution structure of
a novel
hyperthermostable arabinanase from Thermotoga petrophila, Biochem.
Biophys. Res. Com. 399 (2010) 505–511.
[12] G.L. Miller, Use od dinitrosalicilic acid reagent for determination of reducing
sugar, Anal. Chem. 31 (1959) 426–428.
[13] R.H. Myers, D.C. Montgomery, Response Surface Methodology, second ed., John
Wiley & Sons, New York, 2001.
[14] C.R. Santos, F.M. Squina, A.M. Navarro, Et al., Functional and biophysical
characterization of a hyperthermostable GH51 alpha-L-arabinofuranosidase
from Thermotoga petrophila, Biotech. Lett. 33 (2010) 131–137.
[15] C.R. Santos, A.N. Meza, Z.B. Hoffmam, et al., Thermal-induced conformational
changes in the product release area drive the enzymatic activity of xylanases
10B: Crystal
structure, conformational stability and
functional
characterization of the xylanase 10B from Thermotoga petrophila RKU-1,
Biochem. Biophys. Res. Com. 403 (2010) 214–219.
[16] A. Lobley, L. Whitmore, B.A. Wallace, DICHROWEB: an interactive website for
the analysis of protein secondary structure from circular dichroism spectra,
Bioinformatics 18 (2002) 211–212.
[17] A. P. Hammersley, FIT2D: An Introduction and Overview. In ESRF Internal
Report, (1997).
Acknowledgments
[18] A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays, John Wiley and Sons,
New York, 1955.
This research was supported by grants from FAPESP (08/58037-
9) to FMS and CNPq(478059/2009-4) to MTM and scholarship from
CNPq (140420/2009-6) to JC.
[19] H. Fischer, M. Oliveira Neto, H.B. Napolitano, et al., Determination of the
molecular weight of proteins in solution from a single small-angle X-ray
scattering measurement on a relative scale, J. Appl. Cryst. 43 (2010) 101–109.
[20] D.I. Svergun, Determination of the regularization parameter in indirect-
transform methods using perceptual criteria, J. Appl. Cryst. 25 (1992) 495–503.
[21] D.I. Svergun, Restoring low resolution structure of biological macromolecules
from solution scattering using simulated annealing, Biophys. J. 76 (1999)
2879–2886.
[22] J. Söding, A. Biegert, A.N. Lupas, The HHpred interactive server, Nucleic Acids
Res. 33 (2005) W244–W248.
[23] P.V. Konarev, M.V. Petoukhov, D.I. Svergun, MASSHA - a graphics system for
rigid-body modeling of macromolecular complexes against solution scattering
data, J. Appl. Crystallogr. 34 (2001) 527–532.
[24] D.I. Svergun, C. Barberato, M.H.J. Koch, CRYSOL – a program to evaluate X-ray
solution scattering of biological macromolecules from atomic coordinates, J.
Appl. Crystallogr. 28 (1995) 768–773.
[25] M.V. Petoukhov, D.I. Svergun, Global rigid body modeling of macromolecular
complexes against small-angle scattering data, Biophys. J. 89 (2005) 1237–
1250.
[26] Y. Gueguen, W.G.B. Voorhorst, J. van der Oost, W.M. de Vos, Molecular and
biochemical characterization of an endo- b-1, 3-glucanase of the
Hyperthermophilic archaeon Pyrococcus furiosus, J. Biol. Chem. 272 (1997)
31258–31264.
[27] R.W. Woody, Contributions of tryptophan side chains to the far-ultraviolet
circular dichroism of proteins, Eur. Biophys. J. 23 (1994) 253–262.
[28] B.L. Cantarel, P.M. Coutinho, C. Rancurel, et al., The Carbohydrate-Active
EnZymes database (CAZy): an expert resource for Glycogenomics, Nucleic
Acids Res. 37 (2009) D233–D238.
References
[1] M.E. Himmel, S.Y. Ding, D.K. Johnson, et al., Biomass recalcitrance. Engineering
plants and enzymes for biofuels production, Science 315 (2007) 804–807.
[2] V.V. Zverlov, I.Y. Volkov, T.V. Velikodvorskaya, W.H. Schwarz, Highly
thermostable endo-1, 3-beta-glucanase (laminarinase) LamA from
Thermotoga neapolitana: nucleotide sequence of the gene and
characterization of the recombinant gene product, Microbiology 143 (1997)
1701–1708.
[3] J. Vasur, R. Kawai, E. Andersson, et al., X-ray crystal structures of
Phanerochaete chrysosporium Laminarinase 16A in complex with products
from lichenin and laminarin hydrolysis, FEBS J. 276 (2007) 3858–3869.
[4] T.R. Storseth, K. Hansen, K.I. Reitan, J. Skjermo, Carbohydr. Res. 340 (2005)
1159–1164.
[5] M. Hrmova, G.B. Fincher, Purification and properties of three (1-3)-beta-D-
glucanase isoenzymes from young leaves of barley (Hordeum vulgare),
Biochem. J. (1993) 453–461.
[6] A. Ilari, A. Fiorillo, S. Angelaccio, et al., Crystal structure of
a family 16
endoglucanase from the hyperthermophile Pyrococcus furiosus–structural basis
of substrate recognition, FEBS J. 276 (2009) 1048–1058.
[7] T.Y. Hong, Y.T. Hsiao, M. Meng, T.T. Li, The 1.5 A structure of endo-1, 3-beta-
glucanase from Streptomyces sioyaensis: evolution of the active-site structure
for 1, 3-beta-glucan-binding specificity and hydrolysis Acta Crystallogr, D Biol.
Crystallogr. 64 (2008) 964–970.
[8] G. Fibriansah, S. Masuda, N. Koizumi, et al., The 1.3 A crystal structure of a
novel endo-beta-1, 3-glucanase of glycoside hydrolase family 16 from
alkaliphilic Nocardiopsis sp. strain F96, Proteins 69 (2007) 683–690.
[29] F.M. Squina, A.J. Mort, S.R. Decker, et al., Xylan decomposition by Aspergillus
clavatus endo-xylanase, Protein Expression Purif. 68 (2009) 65–71.