SYNTHESIS AND PROPERTIES OF MAIN-CHAIN PHOSPHORESCENT POLYMER
2511
Metals, 2009, vol. 159, p. 1876.
and electroluminescent properties of PFCz polymer
system are better, and the energy transfer between host
and guest is more efficient. Fluorescence quantum ef-
ficiency of PFCzIr(PhStz) 5.0 reaches 22.74%, the best
device performances are achieved with PFCzIr(PhStz) 5.0
characterized by a maximum brightness of 1568 cd/m2 at
14 V, and the luminous efficiency reaches 6.24 cd/A, and
power efficiency is as high as 2.45 lm/w.
10. Li, T.-Y., Wu, J., Wu, Z.-G., Zheng, Y.-X., Zuo, J.-L., and
Pan, Y., Coord. Chem. Rev., 2018, vol. 374, p. 55.
11. Chi, Y. and Chou, P.-T., Chem. Soc. Rev., 2010,
vol. 39, p. 638.
12. Ho, C.-L. and Wong, W.-Y., Chem. Rev., 2013,
vol. 257, p. 1614.
FUNDING
13. Liu, B., Dang, F., Tian, Z., Feng, Z., Jin, D., Dang, W.,
Yang, X., Zhou, G., and Wu, Z., ACS Appl. Mater.
Inter., 2017, vol. 9, no. 19, p. 16360.
This work was supported by the National Natural Science
Foundation of China (21374017 and 21574021), Natural Sci-
ence Foundation of Fujian Province (2017J01683), Program
for Innovative Research Team in Science and Technology in
Fujian Province University (IRTSTFJ).
14. Mao, H.-T., Zang, C.-X., Shan, G.-G., Sun, H.-Z.,
Xie, W.-F., and Su, Z.-M., Inorg. Chem., 2017, vol. 56,
no. 16, p. 9979.
15. Mydlak, M., Yang, C.-H., Polo, F., Galstyan, A., Dani-
liuc, C.G., Felicetti, M., Leonhardt, J., Strassert, C.A., and
De Cola, L., Chem. – Eur. J., 2015, vol. 21, no. 13,
p. 5161.
CONFLICT OF INTEREST
No conflict of interest was declared by the authors.
AUTHOR CONTRIBUTION
Chao Liu and Dongdong Li contributed equally to this
work.
16. Zhao, J.-H., Hu, Y.-X., Lu, H.-Y., Lü, Y.-L., and
Li, X., Org. Electr., 2017, vol. 41, p. 56.
17. Wei, X., Peng, J., Cheng, J., Xie, M., Lu, Z., Li, C., and
Cao, Y., Adv. Func. Mater., 2007, vol. 17, no. 16, p. 3319.
REFERENCES
1. Wang, Y., Bai, K., Wang, S., Ding, J., and Wang, L., ACS
Appl. Mater. Interfaces, 2018, vol. 10, no. 38, p. 32365.
2. Yang, X., Zhou, G., and Wong, W.-Y., Chem. Soc.
Rev., 2015, vol. 44, p. 8484.
3. Ying, L., Ho, C.-L., Wu, H.-B., Cao, Y., and Wong,
W.-Y., Adv. Mater., 2014, vol. 26, p. 2459.
18. Ranger, M., Rondeau, D., and Leclerc, M., Macromol.,
1997, vol. 30, no. 25 p. 7686.
19. Han, L., Yang, D., Li, W., Chu, B., Chen, Y., Su, Z.,
Zhang,D., Yan, F., Wu, S., Wang, J., Hu, Z., and Zhang, Z.,
Appl. Phys. Lett, 2009, vol. 94, p. 163303.
4. Miao, Y.-Q., Gao, Z.-X., Wang, H., Jia, H.-S., Liu, X.-G.,
Xu, B.S., and Wei, B., Org. Electron, 2015,
vol. 23, p. 199.
20. Langecker, J., Karg, O., Meusinger, R., and Rehahn, M.,
J. Organomet. Chem., 2018, vol. 862, p. 105.
21. Lai, W.-Y., Levell, J.W., Jackson, A.C., Lo, S.-C., Bern-
hardt, P.V., Samuel, I.D.W., and Burn, P.L., Macromol.,
2010, vol. 43, no. 17, p. 6986.
5. Kumar, S., Surati, K.R., Lawrence, R., Vamja, A.C.,
Yakunin, S., Kovalenko, M. V., and Shih, C.-J., Inorg.
Chem., 2017, vol. 56 , p. 15304.
6. Page, Z.A., Narupai, B., Pester, C.W., Bou Zer-
dan, R., Sokolov, A., Laitar, D.S., and Hawker, C.J.,
ACS Central Sci., 2017, vol. 3, p. 654.
22. Yu, T., Xu, Z., Su, W., Zhao, Y., Zhang, H., and Bao, Y.,
Dalton Trans., 2016, vol. 45, no. 34, p. 13491.
23. Kuo, H.-H., Chen, Y.-T., Devereux, L.R., Wu, C.-C.,
Fox, M.A., Kuei, C.-Y., Chi, Y., and Lee, G.-H., Adv.
Mater., 2017, vol. 29, no. 33, p. 1702464.
7. Zhong, Z., Wang, X., Ma, Y., Peng, F., Guo, T.,
Jiang, J.-X., Ying, L., Wang, J., Peng, J., and Cao, Y.,
Org. Electr., 2018, vol. 57, p. 178.
8. Guo, T., Yu, L., Zhao, B., Li, Y., Tao, Y., Yang, W.,
Hou Q., Wu, H., and Cao, Y., Macromol. Chem.
Phys., 2012, vol. 213, p. 820.
24. Hu, Y.-X., Xia, X., He, W.-Z., Tang, Z.-J., Lv, Y.-L., Li, X.,
and Zhang, D.-Y., Org. Electr., 2019, vol. 66, p. 126.
9. Liang, B., Xu, Y., Chen, Z., Peng, J., and Cao, Y., Synth.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 89 No. 12 2019