Journal of the American Chemical Society
Page 4 of 5
(16.3 V/µm) because of lack of emission tips. The results
(7) Wan, W. B.; Brand, S. C.; Pak, J. J.; Haley, M. M. Chem.
Eur, J. 2000, 6, 2044.
(8) Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. ACS
Nano 2011, 5, 2593.
(9) Qian, X. M.; Liu, H. B.; Huang, C. S.; Chen, S. H.; Zhang,
L.; Li, Y. J.; Wang, J. Z.; Li, Y. L. Sci. Rep. 2015, 5, 7756.
(10) (a) Sun, C.; Searles, D. J. J. Phys. Chem. C 2012, 116, 26222.
(b) Zhang, H.; Xia, Y.; Bu, H.; Wang, X.; Zhang, M.; Luo, Y.;
Zhao, M. J. Appl. Phys. 2013, 113, 044309.
1
2
3
4
5
6
7
8
show the following conclusions. First, the graphdiyne nan-
owalls are consist of high density of effective emission tips,
that is, the edges of vertically oriented thin “walls” as shown
in Figure 1. Second, some regions of the sample were merely
with amorphization or lower polymerization degree which
couldn’t endure a strong current and were burned. Finally,
the sheets of graphdiyne nanowalls with regular structure are
tolerant to a high current attributed to the conjugated struc-
ture, indicating graphdiyne as a candidate for all-carbon
electric devices.
(11) Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li,
Y. L. Nano Energy 2015, 11, 481.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Hwang, H. J.; Lee, H. J. Phys. Chem. C 2012, 116, 20220.
(13) Cranford, S. W.; Buehler, M. J. Nanoscale 2012, 4, 4587.
(14) Bhaskar, A.; Guda, R.; Haley, M. M.; Goodson J. Am.
Chem. Soc. 2006, 128, 13972.
(15) Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng,
Q.; Li, Y. Adv. Energy Mater. 2015, 1401943.
(16) Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li,
Y. L.; Wang, D. ACS Nano 2013, 7, 1504.
(17) Zhang, X.; Zhu, M. S.; Chen, P. L.; Li, Y. J.; Liu, H. B.; Li, Y.
L.; Liu, M. H. Phys. Chem. Chem. Phys. 2015, 17, 1217.
(18) Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem., Int.
Ed. Engl. 1997, 36, 836.
(19) Johnson, C. A.; Lu, Y.; Haley, M. M. Org. Lett. 2007, 9,
3725.
(20) Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.;
Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.;
Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. Nat.
Commun. 2012, 3, 1286.
In conclusion, for the first time, graphdiyne nanowalls
were synthesized successfully via a modified Glaser-Hay cou-
pling reaction by regulating the catalytic active sites. It bears
typical Raman peaks of diyne and benzene rings along with
lattice spacing of 0.466 nm. What’s more, such novel mor-
phology of graphdiyne has shown extraordinary and stable
field emission properties. The strategy used here has thrown
a glimmer of light on exploration of graphdiyne construction
with well-defined nanostructure. With a better understand-
ing of the reaction process, it’s promising to synthesize large
domain of graphdiyne with high crystallization and study
some basic properties of graphdiyne.
ASSOCIATED CONTENT
Supporting Information
Experimental details, characterization methods, supplemen-
tary figures. This material is available free of charge via the
(21) Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B.
Chem. Commun. 2010, 46, 3256.
(22) Li, G. X.; Li, Y.L.; Qian, X. M.; Liu, H. B.; Lin, H. W.;
Chen, N.; Li, Y. J. J. Phys. Chem. C 2011, 115, 2611.
(23) Qian, X. M.; Ning, Z. Y.; Li, Y. L.; Liu, H. B.; Ouyang, C.
B.; Chen, Q.; Li, Y. J. Dalton Trans. 2012, 41, 730.
(24) Glaser, C.; Ber. dtsch. chem. Ges. 1869, 2, 422.
(25) Hay, A. S.; The J. Org. Chem. 1962, 27, 3320.
(26) Kumar, B.; Lee, K. Y.; Park, H.-K.; Chae, S. J.; Lee, Y. H.;
Kim, S.-W. ACS Nano 2011, 5, 4197.
(27) Alexandrou, I. Phys. Rev. B 1999, 60, 10903.
(28) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;
Dresselhaus, M. S.; Kong, J. Nano Letts 2009, 9, 30.
(29) Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.;
Gao, Z.; Nagase, S.; Lu, J. Nanoscale 2012, 4, 3990.
(30) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.;
Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.;
Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.
(31) Wang, J. Y.; Zhang, S. Q.; Zhou, J. Y.; Liu, R.; Du, R.; Xu,
H.; Liu, Z. R.; Zhang, J.; Liu, Z. F. Phys. Chem. Chem. Phys.
2014, 16, 11303.
(32) Luo, G.; Qian, X.; Liu, H., Qin, R.; Zhou, J.; Li, L.; Gao, Z.;
Wang, En.; Mei, W.; Li, Y.; Shigeru Nagase, Phys. Rev. B, 2011,
84, 075439.
(33) (a) Zhang, G. H.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R. P.;
Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, An W. J.
Am. Chem. Soc. 2014, 136, 924. (b) Bai, R. P.; Zhang, G. H.; Yi,
H.; Huang, Z. L.; Qi, X. T.; Liu, C.; Miller, J. T.; Kropf, A. J.;
Bunel, E. E.; Lan, Y.; Lei, An W. J. Am. Chem. Soc. 2014, 136,
16760.
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank Jinying Wang and Zhenzhu Li for valuable discus-
sion from the perspective of theoretical calculation.
This work was financially supported by the Ministry of Sci-
ence and Technology of China (Grants 2013CB932603,
2012CB933404), the National Natural Science Foundation of
China (Grants 51432002) and the Ministry of Education
(20120001130010).
REFERENCES
(1) Kroto, H. W.; Allaf, A. W.; Balm, S. P. Chem. Rev. 1991, 91,
1213.
(2) Iijima, S. Nature 1991, 354, 56.
(3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;
Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Sci-
ence 2004, 306, 666.
(4) Diederich, F. Nature 1994, 369, 199.
(5) Heimann, R. B.; Koga, Y. Carbon 1997, 35, 1654.
(6) Baughman, R. H.; Eckhardt, H.; Kertesz, M. The J. Chem.
Phys. 1987, 87, 6687.
(34) Yu, T.; Zhu, Y.; Xu, X.; Shen, Z.; Chen, P.; Lim, C.; Thong,
J.; Sow, C. H. Adv. Mater. 2005, 17, 1595.
(35) Wu, Z. S.; Pei, S. F.; Ren, W. C.; Tang, D. M.; Gao, L. B.;
Liu, B. L.; Li, F.; Liu, C.; Cheng, H. M.; Adv. Mater. 2009, 21, 17.
ACS Paragon Plus Environment