Lithium Chloride: An Active and Simple
Catalyst for Cyanosilylation of Aldehydes
and Ketones
desired adducts. Recently reported chiral Lewis acid-
Lewis base combined catalysts have been successfully
7
applied to the asymmetric reaction.
3b,5a
,3l BF
3f
Metal halides, such as AlCl
3
,
BiBr
3
3
, InX
3
(X
3o
3m
3e
3f
3f
)
R
Br,
SnCl
F
2
), LnCl
(R ) n-C
3
(Ln ) La, Ce, Sm), MgBr
2
, SnCl
4
,
Nobuhito Kurono, Masayo Yamaguchi, Ken Suzuki, and
Takeshi Ohkuma*
3
j
,3f and ZnI
3a
2
4
9
H , C
H
6 5
), TiCl
4
2
,
are
known to be Lewis acidic catalysts for cyanosilylation of
aldehydes. However, no report has described the catalytic
properties of LiCl, one of the simplest metal halides, for
this reaction.8 We here report an efficient and facile
procedure for cyanosilylation of aldehydes and some
ketones catalyzed by LiCl with a substrate-to-catalyst
molar ratio (S/C) as high as 100 000 under solvent-free
conditions. A series of silylated cyanohydrins can be
isolated by direct distillation.
Division of Chemical Process Engineering, Graduate School
of Engineering, Hokkaido University,
Sapporo 060-8628, Japan
Received April 19, 2005
First, the catalytic activity of simple alkaline salts was
tested in the reaction of benzaldehyde (1a) and (CH ) -
3 3
SiCN in a 1:1 ratio at 20-25 °C. As shown in Table 1,
LiCl exhibited excellent catalytic activity under solvent-
free conditions. The reaction with an S/C of 10 000 [1a
(
3 3
72.7 g, 678 mmol), (CH ) SiCN (68.0 g, 685 mmol), LiCl
LiCl acts as a highly effective catalyst for cyanosilylation of
various aldehydes and ketones to the corresponding silylated
cyanohydrins. The reaction proceeds smoothly with a sub-
strate/catalyst molar ratio of 100-100 000 at 20-25 °C
under solvent-free conditions. R,â-Unsaturated aldehydes
are completely converted to the 1,2-adducts. The cyanation
products can be isolated by direct distillation of the reaction
mixture.
(2.5 mg, 59 µmol)] was completed within 1 h, affording
the cyanation product 2a in 100% yield (entry 2). A THF
solution of LiCl could be used for this reaction [1a (1.07
g, 10.1 mmol), (CH ) SiCN (1.02 g, 10.3 mmol), LiCl (29.5
3
3
mM in THF, 34 µL, 1.0 µmol)] without loss of catalytic
activity (entry 3). Turnover frequency (TOF), defined as
moles of product per mole of catalyst per hour, reached
(
4) Chiral catalysts: (a) Reetz, M. T.; Kunisch, F.; Heitmann, P.
Tetrahedron Lett. 1986, 27, 4721-4724. (b) Minamikawa, H.; Hay-
akawa, S.; Yamada, T.; Iwasawa, N.; Narasaka, K. Bull. Chem. Soc.
Jpn. 1988, 61, 4379-4383. (c) Kobayashi, S.; Tsuchiya, Y.; Mukaiyama,
T. Chem. Lett. 1991, 541-544. (d) Ohno, H.; Nitta, H.; Tanaka, K.;
Mori, A.; Inoue, S. J. Org. Chem. 1992, 57, 6778-6783. (e) Corey, E.
J.; Wang, Z. Tetrahedron Lett. 1993, 34, 4001-4004. (f) Hayashi, M.;
Inoue, T.; Miyamoto, Y.; Oguni, N. Tetrahedron 1994, 50, 4385-4398.
(g) Bolm, C.; M u¨ ller, P. Tetrahedron Lett. 1995, 36, 1625-1628. (h)
Abiko, A.; Wang, G. J. Org. Chem. 1996, 61, 2264-2265. (i) Yang, W.-
B.; Fang, J.-M. J. Org. Chem. 1998, 63, 1356-1359. (j) Belocon’, Y.
N.; Caveda-Cepas, S.; Green, B.; Ikonnikov, N. S.; Khrustalev, V. N.;
Larichev, V. S.; Moscalenko, M. A.; North, M.; Orizu, C.; Tararov, V.
I.; Tasinazzo, M.; Timofeeva, G. I.; Yashkina, L. V. J. Am. Chem. Soc.
1999, 121, 3968-3973. (k) Belocon’, Y. N.; North, M.; Parsons, T. Org.
Lett. 2000, 2, 1617-1619. (l) You, J. S.; Gau, H.-M.; Choi, M. C. K.
Chem. Commun. 2000, 1963-1964. (m) Gama, A.; Flores-L o´ pez, L. Z.;
Aguirre, G.; Parra-Hake, M.; Somanathan, R.; Waish, P. J. Tetrahe-
dron: Asymmetry 2002, 13, 149-154. (n) Lundgren, S.; Lutsenko, S.;
J o¨ nsson, C.; Moberg, C. Org. Lett. 2003, 5, 3663-3665. (o) Li, Y.; He,
B.; Qin, B.; Feng, X.; Zhang, G. J. Org. Chem. 2004, 69, 7910-7913.
(5) (a) Evans, D. A.; Truesdale, L. K. Tetrahedron Lett. 1973, 4929-
4932. (b) Ohta, H.; Hayakawa, S.; Moriwaki, H.; Harada, S.; Okamoto,
M. Chem. Pharm. Bull. 1986, 34, 4916-4926. (c) Kobayashi, S.;
Tsuchida, Y.; Mukaiyama, T. Chem. Lett. 1991, 537-540. (d) Matsub-
ara, S.; Takai, T.; Utimoto, K. Chem. Lett. 1991, 1447-1450. (e) Ruble,
J. C.; Fu, G. C. J. Org. Chem. 1996, 61, 7230-7231. (f) Kantam, M.
L.; Sreekanth, P.; Santhi, P. L. Green. Chem. 2000, 47-48. (g)
Wilkinson, H. S.; Grover, P. T.; Vandedbossche, C. P.; Bakale, R. P.;
Bhongle, N. N.; Wald, S. A.; Senanayake, C. H. Org. Lett. 2001, 3, 553-
556. (h) Wang, Z.; Fetterly, B.; Verkade, J. G. J. Organomet. Chem.
2002, 646, 161-166. (i) Kim, S. S.; Rajagopal, G.; Song, D. G. J.
Organomet. Chem. 2004, 689, 1734-1738.
Cyanosilylation of carbonyl compounds is an efficient
procedure for the synthesis of silylated cyanohydrins,
which are readily converted to useful functionalized
compounds, such as R-hydroxy carbonyl compounds and
1,2
â-amino alcohols. Liquid (CH
3 3
) SiCN (bp 118 °C) reacts
with aldehydes in the presence of a catalytic amount of
3
,4
5,6
Lewis acids or nucleophilic compounds to afford the
(
1) (a) North, M. Synlett 1993, 807-820. (b) Effenberger, F. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1555-1564. (c) Gregory, R. J. H. Chem.
Rev. 1999, 99, 3649-3682.
(2) (a) Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin,
N. S. Tetrahedron 1988, 44, 2675-2749. (b) Rasmussen, J. K.;
Heilmann, S. M.; Krepski, L. R. In Advances in Silicon Chemistry;
Larson, G. L., Ed.; JAI Press: London, 1991; Vol. 1, pp 65-187. (c)
North, M. Tetrahedron: Asymmetry 2003, 14, 147-176.
(3) (a) Evans, D. A.; Truesdale, L. K.; Carroll, G. L. J. Chem. Soc.,
Chem. Commun. 1973, 55-56. (b) Lidy, W.; Sundermeyer, W. Chem.
Ber. 1973, 106, 587-593. (c) Noyori, R.; Murata, S.; Suzuki, M.
Tetrahedron 1981, 37, 3899-3910. (d) Greenlee, W. J.; Hangauer, D.
G. Tetrahedron Lett. 1983, 24, 4559-4560. (e) Vougioukas, A. E.;
Kagan, H. B. Tetrahedron Lett. 1987, 28, 5513-5516. (f) Reetz, M. T,;
Drewes, M. W.; Harms, K.; Reif, W. Tetrahedron Lett. 1988, 29, 3295-
3298. (g) Faller, J. W.; Gundersen, L.-L. Tetrahedron Lett. 1993, 34,
2275-2278. (h) Scholl, M.; Fu, G. C. J. Org. Chem. 1994, 59, 7178-
7179. (i) Cozzi, P. G.; Floriani, C. J. Chem. Soc., Perkin Trans. 1 1995,
2557-2563. (j) Whitesell, J. K.; Apodaca, R. Tetrahedron Lett. 1996,
37, 2525-2528. (k) Yang, Y.; Wang, D. Synlett 1997, 1379-1380. (l)
Komatsu, N.; Uda, M.; Suzuki, H.; Takahashi, T.; Domae, T.; Wada,
M. Tetrahedron Lett. 1997, 38, 7215-7128. (m) Loh, T.-P.; Xu, K.-C.;
Ho. D. S.-C.; Sim, K.-Y. Synlett, 1998, 369-370. (n) Saravanan, P.;
Anand, R. V.; Singh, V. K. Tetrahedron Lett. 1998, 39, 3823-3824. (o)
Bandini, M.; Cozzi, P. G.; Garelli, A.; Melchiorre, P.; Unami-Ronchi,
A. Eur. J. Org. Chem. 2002, 3243-3249. (p) King, J. B.; Gabbai, F. P.
Organometallics 2003, 22, 1275-1280. (q) C o´ rdoba, R.; Plumet, J.
Tetrahedron Lett. 2003, 44, 6157-6159. (r) Baleiz a˜ o, C.; Gigante, B.;
Garcia, H.; Corma, A. Tetrahedron Lett. 2003, 44, 6813-6816. (s)
Karimi, B.; Ma’Mani, L. Org. Lett. 2004, 6, 4813-4815.
(6) Chiral catalysts: (a) Holmes, I. P.; Kagan, H. B. Tetrahedron
Lett. 2000, 41, 7453-7456. (b) Holmes, I. P.; Kagan, H. B. Tetrahedron
Lett. 2000, 41, 7457-7460.
(7) (a) Hamashima, Y.; Sawada, D.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 1999, 121, 2641-2642. (b) Shibasaki, M.; Kanai, M.;
Funabashi, K. Chem. Commun. 2002, 1989-1999. (c) Ryu, D. H.;
Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8106-87107.
(8) No catalytic activity of LiCl with triglyme monomethyl ether for
3 3
reaction of camphor and (CH )
SiCN in THF was reported.5g
10.1021/jo050791t CCC: $30.25 © 2005 American Chemical Society
6530
J. Org. Chem. 2005, 70, 6530-6532
Published on Web 06/30/2005