Bioconjugate Chemistry
Page 10 of 12
A. (2007) In vitro phototoxicity of glycoconjugated porphyrins and
This work was supported by the National Science Foundation
CHE-1610755, Hunter College science infrastructure is supported
by the NSF, the National Institute on Minority Health and Health
Disparities 8G12 MD007599, and the City University of New
York. The authors also acknowledge Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa for the doctoral research
SFRH/BD/85941/2012 (to PMRP). Thanks are due to FCT/MEC
for the financial support to QOPNA (FCT UID/QUI/00062/2013),
chlorins in colorectal adenocarcinoma (HT29) and retinoblastoma
(Y79) cell lines. Photodiagnosis Photodyn. Ther. 4, 261-268.
(12) Zorlu, Y., Ermeydan, M. A., Dumoulin, F., Ahsen, V.,
Savoie, H., and Boyle, R. W. (2009) Glycerol and galactose substituted
zinc phthalocyanines. Synthesis and photodynamic activity.
Photochem. Photobiol. Sci. 8, 312-318.
(13) Okada, M., Kishibe, Y., Ide, K., Takahashi, T., and
Hasegawa, T. (2009) Convenient Approach to Access Octa-
Glycosylated Porphyrins via “Click Chemistry”. Int. J. Carbohydr.
Chem. 2009, 305276.
1
2
3
4
5
6
7
8
IBILI
(FCT
UID/NEU/04539/2013) and
CQE
(FCT
UID/QUI/0100/2013) research units, through national funds and
where applicable co-financed by the FEDER, within the PT2020
Partnership Agreement.
9
(14) Iqbal, Z., Hanack, M., and Ziegler, T. (2009) Synthesis of an
octasubstituted galactose zinc(II) phthalocyanine. Tetrahedron Lett.
50, 873-875.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Soares, A. R. M., Tomé, J. P. C., Neves, M. G. P. M. S.,
Tomé, A. C., Cavaleiro, J. A. S., and Torres, T. (2009) Synthesis of
water-soluble phthalocyanines bearing four or eight d-galactose units.
Carbohydr. Res. 344, 507-510.
(16) Hirohara, S., Nishida, M., Sharyo, K., Obata, M., Ando, T.,
and Tanihara, M. (2010) Synthesis, photophysical properties and
photocytotoxicity of mono-, di-, tri- and tetra-glucosylated
fluorophenylporphyrins. Bioorg. Med. Chem. 18, 1526-1535.
(17) Pasetto, P., Chen, X., Drain, C. M., and Franck, R. W. (2001)
Synthesis of hydrolytically stable porphyrin C- and S-glycoconjugates
in high yields. Chem. Comm., 81-82.
(18) Samaroo, D., Soll, C. E., Todaro, L. J., and Drain, C. M.
(2006) Efficient microwave-assisted synthesis of amine-substituted
tetrakis(pentafluorophenyl)porphyrin. Org. Lett. 8, 4985-4988.
(19) Samaroo, D., Vinodu, M., Chen, X., and Drain, C. M. (2007)
meso-Tetra(pentafluorophenyl)porphyrin as an Efficient Platform for
Combinatorial Synthesis and the Selection of New Photodynamic
Therapeutics using a Cancer Cell Line. J. Comb. Chem. 9, 998-1011.
(20) Bhupathiraju, N. V. S. D. K., Rizvi, W., Batteas, J. D., and
Drain, C. M. (2016) Fluorinated porphyrinoids as efficient platforms
for new photonic materials, sensors, and therapeutics. Org. Biomol.
Chem. 14, 389-408.
(21) Chen, X., Hui, L., Foster, D. A., and Drain, C. M. (2004)
Efficient synthesis and photodynamic activity of porphyrin-saccharide
conjugates: targeting and incapacitating cancer cells. Biochemistry 43,
10918-10929.
(22) Josefsen, L. B., and Boyle, R. W. (2008) Photodynamic
therapy: novel third-generation photosensitizers one step closer? Br. J.
Pharmacol. 154, 1-3.
(23) Kralova, J., Briza, T., Moserova, I., Dolensky, B., Vasek, P.,
Pouckova, P., Kejik, Z., Kaplanek, R., Martasek, P., Dvorak, M., and
Kral, V. (2008) Glycol porphyrin derivatives as potent photodynamic
inducers of apoptosis in tumor cells. J. Med. Chem. 51, 5964-5973.
(24) van Hattum, H., Branderhorst, H. M., Moret, E. E., Nilsson,
U. J., Leffler, H., and Pieters, R. J. (2013) Tuning the Preference of
Thiodigalactoside- and Lactosamine-Based Ligands to Galectin-3 over
Galectin-1. J. Med. Chem. 56, 1350-1354.
(25) Pereira, P. M. R., Silva, S., Ramalho, J. S., Gomes, C. M.,
Girão, H., Cavaleiro, J. A. S., Ribeiro, C. A. F., Tomé, J. P. C., and
Fernandes, R. (2016) The role of galectin-1 in in vitro and in vivo
photodynamic therapy with a galactodendritic porphyrin. Eur. J.
Cancer 68, 60-69.
ACKNOWLEDGMENT
“We thank Professor Eileen Jaffer, Department of Molecular Ther-
apeutics at Fox Chase Cancer Center of Temple University Health
Systems, for reading the manuscript and insightful comments.”
ABBREVIATIONS
GLUT1, glucose transporter 1; PDT, Photodynamic Therapy; PS,
Photosensitizer; ROS, Reactive Oxygen Species, DMSO
dimtheylsulfoxide.
REFERENCES
(1)
modulators of tumour progression. Nat. Rev. Cancer 5, 29-41.
(2) Rabinovich, G. A. (2005) Galectin-1 as a potential cancer
target. Br. J. Cancer 92, 1188-1192.
Liu, F.-T., and Rabinovich, G. A. (2005) Galectins as
(3)
Kell, D. B., and Oliver, S. G. (2014) How drugs get into
cells: tested and testable predictions to help discriminate between
transporter-mediated uptake and lipoidal bilayer diffusion. Front.
Pharmacol. 5, 231, 1-32.
(4)
Drain, C. M., and Mauzerall, D. C. (1992) Photogating of
ionic currents across lipid bilayers. Hydrophobic ion conductance by
an ion chain mechanism. Biophys. J. 63, 1556-1563.
(5)
Singh, S., Aggarwal, A., Thompson, S., Tomé, J. P. C., Zhu,
X., Samaroo, D., Vinodu, M., Gao, R., and Drain, C. M. (2010)
Synthesis and photophysical properties of thioglycosylated- chlorins,
isobacteriochlorins and bacteriochlorins for bioimaging and
diagnostics. Bioconjugate Chem. 21, 2136-2146.
(6)
Singh, S., Aggarwal, A., Bhupathiraju, N. V. S. D. K.,
Arianna, G., Tiwari, K., and Drain, C. M. (2015) Glycosylated
Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics
and Therapeutics. Chem. Rev. 115, 10261-10306.
(7)
Thompson, S., Chen, X., Hui, L., Toschi, A., Foster, D. A.,
and Drain, C. M. (2008) Low concentrations of a non-hydrolysable
tetra-S-glycosylated porphyrin and low light induces apoptosis in
human breast cancer cells via stress of the endoplasmic reticulum.
Photochem. Photobio. Sci. 7, 1415-1421.
(8)
Csík, G., Balog, E., Voszka, I., Tölgyesi, F., Oulmi, D.,
Maillard, P., and Momenteau, M. (1998) Glycosylated derivatives of
tetraphenyl porphyrin: photophysical characterization, self-
aggregation and membrane binding. J. Photochem. Photobiol., B 44,
216-224.
(26) Pereira, P. M. R., Silva, S., Cavaleiro, J. A. S., Ribeiro, C.
A. F., Tomé, J. P. C., and Fernandes, R. (2014) Galactodendritic
Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing
Photodynamic Therapy. PLOS ONE 9, e95529.
(27) Silva, S., Pereira, P. M. R., Silva, P., Almeida Paz, F. A.,
Faustino, M. A. F., Cavaleiro, J. A. S., and Tome, J. P. C. (2012)
Porphyrin and phthalocyanine glycodendritic conjugates: synthesis,
photophysical and photochemical properties. Chem. Comm. 48, 3608-
3610.
(28) Pereira, P. M. R., Berisha, N., Bhupathiraju, N. V. S. D. K.,
Fernandes, R., Tomé, J. P. C., and Drain, C. M. (2017) Cancer cell
spheroids are a better screen for the photodynamic efficiency of
glycosylated photosensitizers. PLOS ONE 12, e0177737.
(9)
Obata, M., Hirohara, S., Sharyo, K., Alitomo, H., Kajiwara,
K., Ogata, S., Tanihara, M., Ohtsuki, C., and Yano, S. (2007) Sugar-
dependent photodynamic effect of glycoconjugated porphyrins: a study
on photocytotoxicity, photophysical properties and binding behavior to
bovine serum albumin (BSA). Biochim. Biophys. Acta. 1770, 1204-
1211.
(10) Hirohara, S., Obata, M., Ogata, S., Ohtsuki, C., Higashida,
S., Ogura, S., Okura, I., Takenaka, M., Ono, H., Sugai, Y., Mikata, Y.,
Tanihara, M., and Yano, S. (2005) Cellular uptake and
photocytotoxicity of glycoconjugated chlorins in HeLa cells. J.
Photochem. Photobiol. B. 78, 7-15.
(11) Maillard, P., Loock, B., Grierson, D. S., Laville, I., Blais, J.,
Doz, F., Desjardins, L., Carrez, D., Guerquin-Kern, J. L., and Croisy,
ACS Paragon Plus Environment