5
456
K. Basu et al. / Tetrahedron Letters 43 (2002) 5453–5456
Ed. 2000, 39, 3012 and references cited therein; (j) Trnka,
3896.
T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18; (k)
Hoveyda, A. H.; Schrock, R. R. Chem. Eur. J. 2001, 7,
13. All-trans 4a is known: Chen, S.-H.; Horvath, R. F.;
Joglar, J.; Fisher, M. J.; Danishefsky, S. J. J. Org. Chem.
1991, 56, 5834. Its reduction with Dibal-H gave 4d.
All-trans 4b and 4c were prepared by application of the
Wadsworth–Emmons process to the aldehyde. [Arce, E.;
Carreno, M. C.; Cid, M. B.; Garcia-Ruano, J. L. Tetra-
hedron: Asymmetry 1995, 6, 1757. Trost, B. M.; Seoane,
P.; Mignani, S.; Acemoglu, M. J. Am. Chem. Soc. 1989,
111, 7487. Inomata, K.; Sasaoka, S.; Kobayashi, T.;
Tanaka, Y.; Igarashi, S.; Ohtani, T.; Kinoshita, H.;
Kotake, H. Bull. Chem. Soc. Jpn. 1987, 60, 1767.] Sub-
strates 4e, 4f, and 4g were accessed by way of the Wittig
reaction; 4f was rich in the cis isomer and 4g was a 1:1
mixture of E and Z isomers, both of which react equally
slowly.
9
45.
4
. For recent examples of medium-to-large ring formation,
consult: (a) Paquette, L. A.; M e´ ndez-Andino, J. Tetra-
hedron Lett. 1999, 40, 4301; (b) Lee, C. W.; Grubbs, R.
H. Org. Lett. 2000, 2, 2145; (c) Paquette, L. A.; Tae, J.;
Arrington, M. P.; Sadoun, A. H. J. Am. Chem. Soc. 2000,
1
22, 2742; (d) Paquette, L. A.; Fabris, F.; Tae, J.; Gal-
lucci, J. C.; Hofferberth, J. E. J. Am. Chem. Soc. 2000,
22, 3391; (e) Wagner, J.; Cabrejas, L. M. M.; Gross-
1
mith, C. E.; Papageorgiou, C.; Senia, F.; Wagner, D.;
France, J.; Nolan, S. P. J. Org. Chem. 2000, 65, 9255.
. Smith, A. B., III; Adams, C. M.; Kozmin, S. A. J. Am.
Chem. Soc. 2001, 123, 990.
5
6
7
. Herrison, J. L.; Chauvin, Y. Makromol. Chem. 1970, 141,
14. Crowe, W. E.; Goldberg, D. R. J. Am. Chem. Soc. 1995,
117, 5162.
1
61.
. (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem.
Soc. 1996, 118, 100; (b) Dias, E. L.; Nguyen, S. T.;
Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887; (c)
Ulman, M.; Grubbs, R. H. Organometallics 1998, 17,
15. Compare: (a) Shon, Y.-S.; Lee, T. R. Tetrahedron Lett.
1997, 38, 1283; (b) Armstrong, S. K.; Christie, B. A.;
Tetrahedron Lett. 1996, 37, 9373; (c) Armstrong, S. K. J.
Chem. Soc., Perkin Trans. 1 1998, 371; (d) Bujard, M.;
Gouverneur, V.; Mioskowski, C. J. Org. Chem. 1999, 64,
2119; (e) Barrett, A. G. M.; Baugh, S. P. D.; Braddock,
D. C.; Flack, K.; Gibson, V. C.; Giles, M. R.; Marshall,
E. L.; Procopiou, P. A.; White, A. J. P.; Williams, D. J.
J. Org. Chem. 1998, 63, 7893.
2
484; (d) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J.
Am. Chem. Soc. 2001, 123, 6543.
. (a) Hinderling, C.; Adlhart, C.; Chen, P. Angew. Chem.
8
1
998, 110, 2831; (b) Adlhart, C.; Hinderling, C.; Bau-
mann, H.; Chen, P. J. Am. Chem. Soc. 2000, 122, 8204.
. In a related context, analysis of the consequences of
varying the halogen atoms and phosphine groups in
ruthenium catalysts related to 1 is included in Ref. 7b.
9
16. Chen’s recent ESI-MS/MS gas-phase mechanistic study
of ruthenium carbene complexes, in tandem with quan-
tum mechanical calculations, have led to the similar
conclusions that the Ru center in these species is electron-
deficient and that multiple delicately balanced reactivity
1
1
1
0. Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62,
310.
1. Fujimura, O.; Fu, G.; Grubbs, R. H. J. Org. Chem. 1994,
9, 4029.
7
8b
effects need to be considered.
5
17. Hoye, T. R.; Zhao, H. Org. Lett. 1999, 1, 1123.
18. F u¨ rstner, A.; M u¨ ller, T. J. Am. Chem. Soc. 1999, 121,
7814.
2. For the ring-closing metathesis of the corresponding 1,7-
octadiene, see: Yao, Q. Angew. Chem., Int. Ed. 2000, 39,