Page 9 of 11
Journal of the American Chemical Society
primarily as an initiator for a self-propagating chain re-
sponsible for the majority of product formation.
1
2
3
CONCLUSIONS
4
5
6
7
8
9
5.
Jin, J.; MacMillan, D. W. C. Alcohols as alkylating
We have developed a strategy based on spin-center
shift that enables the enantioselective a-benzylation of
aldehydes with electron-deficient heterobenzylic alcohols.
To our knowledge, this work represents the first example
of a direct enantioselective a-alkylation of carbonyl com-
pounds with alcohols where the electrophile does not
contain specialized cation-stabilizing features to promote
SN1-type activation. Additional non-traditional leaving
groups, such as acetates and ethers, are also competent in
this reaction, and a-acetoxyketone electrophiles can be
employed to access a further aldehyde a-alkylation motif
via SCS. Mechanistic studies are consistent with spin-
center shift as a key elementary step and elucidate the
impact of electrophile and photocatalyst structures on
reactivity. Finally, enamine oxidation was identified as the
origin of the major side reaction, enabling optimal yields
to be obtained by rational photocatalyst design.
agents in heteroarene C–H functionalization. Nature 2015, 525,
87.
6.
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Visible
light photoredox catalysis: applications in organic synthesis.
Chem. Soc. Rev. 2011, 40, 102. (b) Xuan, J.; Xiao, W. J. Visible-
light photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 6828.
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light
photoredox catalysis with transition metal complexes: Applica-
tions in organic synthesis. Chem. Rev. 2013, 113, 5322. (d) Schultz,
D. M.; Yoon, T. P. Solar Synthesis: Prospects in Visible Light
Photocatalysis. Science 2014, 343, 1239176. (e) Skubi, K. L.; Blum,
T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical
Synthesis. Chem. Rev. 2016, 116, 10035. (f) Shaw, M. H.; Twilton,
J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemis-
try. J. Org. Chem. 2016, 81, 6898.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
7.
Evans, D. A.; Ennis, M. D.; Mathre, D. J. Asymmetric
alkylation reactions of chiral imide enolates. A practical ap-
proach to the enantioselective synthesis of α-substituted carbox-
ylic acid derivatives. J. Am. Chem. Soc. 1982, 104, 1737.
8.
Oppolzer, W.; Moretti, R.; Thomi, S. Asymmetric al-
ASSOCIATED CONTENT
Supporting Information
kylation of N-acylsultams: A general route to enantiomerically
pure, crystalline C(α,α)-disubstituted carboxylic acid derivatives.
Tetrahedron Lett. 1989, 30, 5603.
The Supporting Information is available free of charge on the
ACS Publications website.
9.
Seebach, D.; Wasmuth, D. Herstellung von erythro-2-
Hydroxybernsteinsäure-Derivaten aus Äpfelsäureester. Helv.
Chim. Acta 1980, 63, 197.
10.
of pseudoephedrine as a practical chiral auxiliary for asymmetric
synthesis. J. Am. Chem. Soc. 1994, 116, 9361.
Experimental procedures and compound characterization
data (PDF).
Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. Use
11.
Maruoka, K.; Ooi, T. Enantioselective Amino Acid Syn-
AUTHOR INFORMATION
thesis by Chiral Phase-Transfer Catalysis. Chem. Rev. 2003, 103,
3013.
12.
ga, K. Catalytic Asymmetric Benzylation of Achiral Lithium Eno-
lates Using a Chiral Ligand for Lithium in the Presence of an
Achiral Ligand. J. Am. Chem. Soc. 1994, 116, 8829.
Corresponding Author
Imai, M.; Hagihara, A.; Kawasaki, H.; Manabe, K.; Ko-
*dmacmill@princeton.edu
ACKNOWLEDGMENT
13.
Doyle, A. G.; Jacobsen, E. N. Enantioselective Alkyla-
tions of Tributyltin Enolates Catalyzed by Cr(salen)Cl: Access to
Enantiomerically Enriched All-Carbon Quaternary Centers. J.
Am. Chem. Soc. 2005, 127, 62.
Financial support provided by the NIHGMS (R01 GM-103558-
05) and kind gifts from Merck, Abbvie, BMS, and Janssen.
E.D.N. acknowledges the NIH for a postdoctoral fellowship
(F32 GM119362-01A1).
14.
(a) Nicewicz, D. A.; MacMillan, D. W. C. Merging pho-
toredox catalysis with organocatalysis: the direct asymmetric
alkylation of aldehydes. Science 2008, 322, 77. (b) Shih, H.-W.;
Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. Enanti-
oselective α-benzylation of aldehydes via photoredox organoca-
talysis. J. Am. Chem. Soc. 2010, 132, 13600. (c) Zhu, Y.; Zhang, L.;
Luo, S. Asymmetric α-Photoalkylation of β-Ketocarbonyls by
Primary Amine Catalysis: Facile Access to Acyclic All-Carbon
Quaternary Stereocenters. J. Am. Chem. Soc. 2014, 136, 14642. (d)
Welin, E. R.; Warkentin, A. A.; Conrad, J. C.; MacMillan, D. W.
C. Enantioselective α-Alkylation of Aldehydes by Photoredox
Organocatalysis: Rapid Access to Pharmacophore Fragments
from β-Cyanoaldehydes. Angew. Chem. Int. Ed. 2015, 54, 9668.
REFERENCES
1.
Eklund, H.; Uhlin, U.; Färnegårdh, M.; Logan, D. T.;
Nordlund, P. Structure and function of the radical enzyme ribo-
nucleotide reductase. Prog. Biophys. Mol. Biol. 2001, 77, 177.
2.
Wessig, P.; Muehling, O. Spin-Center Shift (SCS) – A
Versatile Concept in Biological and Synthetic Chemistry. Eur. J.
Org. Chem. 2007, 2219.
15.
Bohlmann, R. Synthesis of Halides. In Comprehensive
Organic Synthesis; Trost, B. M., ed.; Pergamon: Oxford, 1991;
Vol. 6, pp. 203–220.
16.
Asymmetric Alkylation of Aldehydes by SN1-Type Reaction of
Alcohols. Angew. Chem. Int. Ed. 2009, 48, 1313. (b) Guo, Q.-X.;
Peng, Y.-G.; Zhang, J.-W.; Song, L.; Feng, Z.; Gong, L.-Z. Highly
Enantioselective Alkylation Reaction of Enamides by Brønsted-
3.
Dryzhakov, M.; Richmond, E.; Moran, J. Recent Ad-
vances in Direct Catalytic Dehydrative Substitution of Alcohols.
Synthesis 2016, 48, 935.
(a) Cozzi, P. G.; Benfatti, F.; Zoli, L. Organocatalytic
4.
Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Sta-
tistical Investigation into the Structural Complementarity of
Natural Products and Synthetic Compounds. Angew. Chem. Int.
Ed. 1999, 38, 643.
ACS Paragon Plus Environment