Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC09640B
COMMUNICATION
Journal Name
Movassaghi, Chem. Soc. Rev., 2009, 38, 3035; (c) D. Zhang, H.
Song and Y. Qin, Acc. Chem. Res., 2011, 44, 447; (d) W. Zi, Z.
Zuo and D. Ma, Acc. Chem. Res., 2015, 48, 702; For selected
examples, see: (e) E. M. Ferreira and B. M. Stoltz, J. Am.
Chem. Soc., 2003, 125, 9578; (f) H. Li, R. P. Hughes and J. Wu,
J. Am. Chem. Soc., 2014, 136, 6288; (g) A. Acharya, D.
trapped by trivalent copper to get the nitrogen kation radical
intermediate
Intermediate
A, and trivalent copper return back to cupric.
A
is easily attracted by oxygen radical anion
leading to indoline peroxide intermediate B16 which the
molecular mass can be detected by LC-MS during reaction.
Anumandla, and C. S. Jeffrey, J. Am. Chem. Soc., 2015, 137
,
Under the assist of cupric reduction,
intermediate and the cupric turn to cupper (III)-oxygen
radical, which products intermediate and cupric again by
B transfered to
14858; (h) Y. Zhou, Z.-L. Xia, Q. Gu and S.-L. You, Org. Lett.
2017, 19, 762.
For selected reviews, see: (a) M. Chrzanowska and M. D.
2
2
6
reacting with substrate 1 17
position of intermediate
.
In addition, the C-O bond at 2-
is much easier disrupted than 3-
Rozwadowska, Chem. Rev., 2004, 104
, 3341; (b) M.
2
Chrzanowska, A. Grajewska and M. D. Rozwadowska, Chem.
Rev., 2016, 116, 12369; For selected examples, see: (c) X-H.
Liu, D-X. Yang, K-Z. Wang, J-L. Zhang and R. Wang, Geen,
Chem. 2017, 19, 82; (d) L. Zhang, W-J. Yang, L-J. Zhou, H-L.
Liu, J-X. Huang, Y-M. Xiao and H-C. Gao, Angew. Chem., Int.
Ed., 2017, 56, 3377; (e) J-F. Xu, S-R. Yuan, J-Y. Ping, M-Z.
Miao, Z-K. Chen and H-J. Ren, Org. Biomol. Chem., 2017, 15
7513. (f) B. Alcaide, P. Almendros and M. T. Quiros, Chem.
Eur. J. 2014, 20, 3384.
(a) M-Q. Jia, M. Monari, Q-Q. Yang and M. Bandini, Chem.
Commun. 2015, 51, 2320; (b) D. Zhao, J-J. Zhang and Z-W. Xie,
J. Am. Chem. Soc., 2015, 137, 9423.
For selected examples, see: (a) J. Barluenga, E. Tudela, A.
Ballesteros and M. Tomas, J. Am. Chem. Soc., 2009, 131,
position by the effect of electron-donation of lone-pairs of
nitrogen atom and the nucleophilic attack of substrate result
in preferring to dipolar form. Finally, a subsequent oxa-[3+3]
cyclization between dipolar intermediate and enables the
formation of adduct in a high diastereoselectivity due to π-π
stacking and steric hindrance effect between -Ts group and N-
protected group (Scheme 3), this point was further
supported by the control experiment without any catalyst.
Otherwise, the intermediate was processed through 1,3-
proton transformation and tautomerism of enol form to offer
byproduct
3
2
3
4
,
R
7
8
2
5.
2096; (b) Y-J. Lian and H. M. L. Davies, J. Am. Chem. Soc.,
2010, 132, 440; (c) J. E. Spangler and H. M. L. Davies, J. Am.
Chem. Soc., 2013, 135, 6802; (d) H. Xiong, H. Xu, S-H. Liao, Z-
W. Xie and Y. Tang, J. Am. Chem. Soc., 2013, 135, 7851; (e) A-
S. Marques, V. Coeffard, I. Chataigner, G. Viecent and X.
Moreau, Org. Lett. 2016, 18, 5296; (f) A. Mal, M. Sayyad, I. A.
Wani and M. K. Ghorai, J. Org. Chem. 2017, 82, 4.
In conclusion, we have reported a novel copper-catalyzed
aerobic oxidative 1,3-dipolar cyclization for efficiently
introducing indole- and THIQ-based substructures into
complex molecules. This protocol represents an elegant
example of aerobic oxygenation and 1,3-dipolar cyclization of
indoles in good yields and excellent diastereoselectivities
under mild reaction conditions. A diverse range of complex
alkaloid-type pentacycles for diversity-oriented synthesis and
drug discovery could be constructed in one single step.
9
(a) Z-Q. Song, Y-M, Zhao and H-B, Zhai, Org. Lett. 2011, 13,
6331; (b) Q. Cai and S-L, You, Org. Lett. 2012, 14, 3040; (c) Z-
L. Chen, B-L. Wang, Z-B. Wang, G-Y. Zhu and J-W. Sun,
Angew. Chem., Int. Ed., 2013, 52, 2027; (d) M-C. Tong, X.
Chen, J. Li, R. Huang, H-Y. Tao and C-J, Wang, Angew. Chem.,
Int. Ed., 2014, 53, 4680; (e) C. Lin, H-J. Du, H. Zhao, D-F. Yan,
N-X. Liu, H-P. Sun, X-A. Wen and Q-L. Xu, Org. Biomol. Chem.,
2017, 15, 3472.
We greatly appreciate the financial support from the
Program for Guangdong Introducing Innovative and
Entrepreneurial Teams (2016ZT06Y337), and X. J. thanks the
Thousand Young Talents Program for financial support.
10 For selected examples, see: (a) X-H. Zhao, X-H. Liu, Q. Xiong,
H-J. Mei, B-W. Ma, L-L. Lin and X-M. Feng, Chem. Commun.
2015, 51, 16076; (b) Z. Cai, J-N. Chen, Z. Liu, X-F. Li, P-J. Yang,
J-P. Hu and G-S. Yang, Org. Biomol. Chem., 2016, 14, 1024; (c)
G-J. Mei, H. Yuan, Y-Q. Gu, W. Chen, L-W. Chuang and C-C. Li,
Angew. Chem., Int. Ed., 2014, 53, 11051.
11 (a) N. Denizot, A. Pouilhes, M. Cucca, R. Beaud, R. Guillot, C.
Kouklovsky and G. Vincent, Org. Lett., 2014, 16, 5752.
12 (a) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C.
Kozlowski, Chem. Rev., 2013, 113, 6234; (b) X.-X. Guo, D.-W.
Gu, Z. X. Wu and W. B. Zhang, Chem. Rev. 2015, 115, 1622.
13 L. K. Kong, M. D. Wang, F. F. Zhang, M. R. Xu, Y. Z. Li, Org.
Lett., 2016, 18, 6124..
Notes and references
1
For selected reviews, see: (a) V, Sridharan, P. A. Suryavanshi
and J. C. Menéndez, Chem. Rev., 2011, 111, 7157; (b) M.
Shiri, Chem. Rev., 2012, 112, 3508.
2
For selected examples: (a) B. R. O’Keefe, G. B. Mahady, J. J.
Gills, C. W. W. Beecher and A. B. Schilling, J. Nat. Prod., 1997,
60, 261; (b) D. Kato, Y. Sasaki and D. L. Boger, J. Am. Chem.
Soc., 2010, 132, 3685; (c) Y. Sasaki, D. Kato and D. L. Boger, J.
Am. Chem. Soc., 2010, 132, 13533; (d) R. Silvestri, J. Med.
Chem., 2013, 56, 625.
14 H. Huang, J. Cai, X. Ji, F. Xiao, Y. Chen and G. J. Deng, Angew.
Chem., Int. Ed., 2016, 55, 307.
3
4
For selected examples: (a) J. Yang, H. X. Wu, L. Q. Shen and Y.
Qin, J. Am. Chem. Soc., 2007, 129, 13794; (b) M. Reina, W.
Ruiz-Mesia, M. Lopez-Rodriguez, L. Ruiz-Mesia, A. Gonzalez-
Coloma and R. Martinez-Diaz, J. Nat. Prod., 2012, 75, 928; (c)
H. H. Liao, A. Chatupheeraphat, C. C. Hsiao, I. Atodiresei and
M. Rueping, Angew. Chem., Int. Ed., 2015, 54, 15540.
For selected examples: (a) A. Padwa and M. D. Danca, Org.
15 (a) X. Zhang, C. S. Foote and S. I. Khan, J. Org. Chem., 1993,
58, 47; (b) X. Zhang and C. S. Foote, J. Am. Chem. Soc., 1993,
115, 8867; (c) C. Yuan, Y. Wu, D. Wang, Z. Zhang, C. Wang, L.
Zhou, C. Zhang, B. Song and H. Guo, Adv. Synth. Catal. 2017,
359, 1.
16 (a) S. K. Guchhait, V. Chaudhary, V. A. Rana, G. Priyadarshani,
S. Kandekar and M. Kashyap, Org. Lett., 2016, 18, 1534; (b) J.
Ye, J. W, T. Lv, G. L. Wu, Y. Gao and H. J. Chen, Angew. Chem.,
Int. Ed., 2017, 56, 14968.
Lett. 2002,
and M. S. McClure, J. Org. Chem., 2003, 68, 929; (c) N. S.
Simpkin and C. D. Gill, Org. Lett., 2003, , 535; (d) D. Guo, J.
4, 715; (b) A. Padwa, M. D. Danca, K. I. Hardcastle
5
Li, H. Lin, Y. Zhou, Y. Chen, F. Zhao, H. Sun, D. Zhang, H. Li, B.
K. Shoichet, L. Shan, W. Zhang, X. Xie, H. Jiang and H. Liu, J.
Med. Chem. 2016, 59, 9489.
17 (a) S.-I. Murahashi, Y. Oda, T. Naota and N. Komiya, J. Chem.
Soc., Chem. Commun., 1993, 139; (b) N. Komiya, T. Naota, Y.
Oda and S.-I. Murahashi, J. Mol. Catal. A: Chem., 1997, 117
21.
,
5
For selected reviews see: (a) A. Steven and L. E. Overman,
Angew. Chem. Int. Ed., 2007, 46, 5488; (b) J. Kim and M.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins