Advanced Synthesis & Catalysis
10.1002/adsc.201901599
[
[
3] A. Hirano, Y. Iwai, R. Masuma, K. Tei, S. Omura, J.
Antibiot. 1979, 32, 781–785.
4] For the total synthesis of communesin F: a) J. Yang, H.
Wu, L. Shen, Y. Qin, J. Am. Chem. Soc. 2007, 129,
1
3794–13795; b) P. Liu, J. H. Seo, S. M. Weinreb,
Angew. Chem., Int. Ed. 2010, 49, 2000–2003; c) J. H.
Seo, P. Liu, S. M. Weinreb, J. Org. Chem. 2010, 75,
2
667–2680; d) Z. Zuo, W. Xie, D. Ma, J. Am. Chem.
Soc. 2010, 132, 13226–13228; e) J. Belmar, R. L. Funk,
J. Am. Chem. Soc. 2012, 134, 16941–16943; f) S. J.
Han, F. Vogt, S. Krishnan, J. A. May, M. Gatti, S. C.
Virgil, B. M. Stoltz, Org. Lett. 2014, 16, 3316–3319; g)
S. J. Han, F. Vogt, J. A. May, S. Krishnan, M. Gatti, S.
C. Virgil, B. M. Stoltz, J. Org. Chem. 2015, 80, 528–
5
47; h) S. P. Lathrop, M. Pompeo, W. T. Chang, M.
Movassaghi, J. Am. Chem. Soc. 2016, 138, 7763–7769;
i) X. Liang, T. Y. Zhang, X. Y. Zeng, Y. Zheng, K.
Wei, Y. R. Yang, J. Am. Chem. Soc. 2017, 139, 3364–
Scheme 5. Proposed Mechanism.
3
367; j) J. Park, A. Jean, D. Y. Chen, Angew. Chem.,
In conclusion, we have developed a rhodium-
catalyzed denitrogenation reaction of triazoles with
indoles that provides rapid access to pyrido[2,3-
b]indoles in high yields. The triazole acts as an aza-
Int. Ed. 2017, 56, 14237–14240; k) J. Park, A. Jean, D.
Y. Chen, J. Org. Chem. 2018, 83, 6936–6957.
[5] For the total synthesis of chaetominine: a) B. B. Snider,
X. Wu, Org. Lett. 2007, 9, 4913–4915; b) M. Toumi, F.
Couty, J. Marrot, G. Evano, Org. Lett. 2008, 10, 5027–
5030; c) G. Evano, A. Coste, G. Karthikeyan, F. Couty,
Synthesis 2009, 2009, 2927–2934; d) B. Malgesini, B.
Forte, D. Borghi, F. Quartieri, C. Gennari, G. Papeo,
Chem. Eur. J. 2009, 15, 7922–7929; e) T. Newhouse, C.
A. Lewis, P. S. Baran, J. Am. Chem. Soc. 2009, 131,
6360–6361; f) V. R. Espejo, J. D. Rainier, Org. Lett.
2010, 12, 2154–2157; g) T. Ideguchi, T. Yamada, T.
Shirahata, T. Hirose, A. Sugawara, Y. Kobayashi, S.
[
4C] synthon in this reaction rather than an aza-[3C]
synthon, as used in previous reports. This
transformation is particularly attractive because of its
operational simplicity, readily available substrates,
construction of sterically demanding quaternary
centers, and convenient derivatization using a triflate
derivative. Further studies of the construction of
complex polycyclic compounds using triazoles and
their applications in natural product synthesis are
under investigation.
O
̅
mura, T. Sunazuka, J. Am. Chem. Soc. 2013, 135,
1
2568–12571; h) S.-P. Luo, Q.-L. Peng, C.-P. Xu, A.-E.
Wang, P.-Q. Huang, Chin. J. Chem. 2014, 32, 757–770;
i) Q. L. Peng, S. P. Luo, X. E. Xia, L. X. Liu, P. Q.
Huang, Chem. Commun. 2014, 50, 1986–1988; j) C. P.
Xu, S. P. Luo, A. E. Wang, P. Q. Huang, Org. Biomol.
Chem. 2014, 12, 2859–2863.
Experimental Section
General procedure for the synthesis of 3
To a mixture of indole 1 (0.20 mmol) and triazole 2 (0.40
mmol) in anhydrous DCE (1 mL) under N , Rh (OAc)
2 2 4
(
0.002 mmol) was added. The reaction mixture was stirred
[
6] a) S. Jana, J. D. Rainier, Org. Lett. 2013, 15, 4426–
at 60 °C for 4 h. The mixture was cooled to room
temperature and the solvent was removed. The crude
product was purified using a silica gel column (basified
with NaOH, pH 8.0–9.0) to afford product 3.
4
429; b) R. Rallabandi, S. Jana, J. D. Rainier,
Tetrahedron Lett. 2015, 56, 3538–3540; c) X.-L. Liu,
W.-H. Zhang, Z. Yao, X.-W. Liu, L.-J. Peng, Z. Zhao,
Y. Lu, Y. Zhou, W.-C. Yuan, Tetrahedron 2015, 71,
9
483–9495; d) X.-W. Liu, Z. Yao, G.-L. Wang, Z.-Y.
Acknowledgements
Chen, X.-L. Liu, M.-Y. Tian, Q.-D. Wei, Y. Zhou, J.-F.
Zhang, Synth. Commun. 2018, 48, 1454–1464. For
other examples: e) T. Benkovics, I. A. Guzei, T. P.
Yoon, Angew. Chem., Int. Ed. 2010, 49, 9153–9157; f)
S. Zhu, D. W. MacMillan, J. Am. Chem. Soc. 2012, 134,
We are grateful to the National Natural Science Foundation of
China (21871235, 21801224, 21901230), Natural Science
Foundation of Zhejiang Province (LQ18B020009), Fundamental
Research Funds of Zhejiang Sci-Tech University (2019Y003), and
Science Foundation of Zhejiang Sci-Tech University (ZSTU)
under Grant No. 18062301-Y for supporting this work.
1
0815–10818; g) P. C. Knipe, M. Gredicak, A.
Cernijenko, R. S. Paton, M. D. Smith, Chem. Eur. J.
014, 20, 3005–3009; h) J. C. Yi, C. Liu, L. X. Dai, S.
2
L. You, Chem. Asian J. 2017, 12, 2975–2979.
References
[
7] a) B. W. Boal, A. W. Schammel, N. K. Garg, Org. Lett.
[
1] H. Hayashi, H. Matsumoto, K. Akiyama, Biosci.
Biotechnol. Biochem. 2004, 68, 753–756.
2
009, 11, 3458–3461; b) A. W. Schammel, B. W. Boal,
L. Zu, T. Mesganaw, N. K. Garg, Tetrahedron 2010, 66,
687–4695; c) A. T. Duong, B. J. Simmons, M. P.
4
[
2] R. H. Jiao, S. Xu, J. Y. Liu, H. M. Ge, H. Ding, C. Xu,
Alam, J. Campagna, N. K. Garg, V. John, Tetrahedron
Lett. 2019, 60, 322–326.
H. L. Zhu, R. X. Tan, Org. Lett. 2006, 8, 5709–5712.
4
This article is protected by copyright. All rights reserved.