Quinonylidene Hoveyda-type complexes
[
[
10] E. L. Rosen, C. D. Varnado Jr., K. Arumugam, C. W. Bielawski,
J. Organometal. Chem. 2013, 745–746, 201–205.
11] C. D. Varnado Jr., E. L. Rosen, M. S. Collins, V. M. Lynch, C. W. Bielawski,
Dalton Trans. 2013, 42, 13251–13264.
synthesized two other ruthenium benzylidenes bearing phenolic
substituent in position 5 of the benzylidene ring (20a,b). All of the
catalysts were tested in model RCM reactions, and revealed correla-
tions of activities with electronic and steric effects of the substitu-
ents. Attempts at oxidative transformations of the complexes to
ruthenium quinonylidenes failed, leading mainly to decomposi-
[12] Redox activity of the coordination spheres (so-called non-innocent be-
haviour of ligands) is well-documented for catalytic systems:
V. Lyaskovskyy, B. de Bruin, ACS Catal. 2012, 2, 270–279.
1
[13] It was demonstrated, that the Grubbs second-generation catalyst
tions. However, H NMR studies of exchange reaction between
(
2
SiMes) converts into carbyne complex, when treated with I :
VQ ligand 11 and SiPr complex 12b revealed formation of transient
complex assigned to the ruthenium quinonylidene 21. Under ambi-
ent conditions the product underwent secondary reactions, giving
polar red violet destructs. We suspect that the intrinsic instability
of ruthenium quinonylidene derives from destabilization of the
chelate ring, or intramolecular redox processes, which leads to
paramagnetic Ru(III) species.
M. Shao, L. Zheng, W. Qiao, J. Wang, J. Wang, Adv. Synth. Catal. 2012,
354, 2743–2750.
14] S. H. Hong, D. P. Sanders, C. W. Lee, R. H. Grubbs, J. Am. Chem. Soc. 2005,
[
1
27, 17160–17161.
15] a) M. Barbasiewicz, K. Grudzień, M. Malińska, Organometallics 2012, 31,
171–3177; b) K. Grudzień, M. Malińska, M. Barbasiewicz,
Organometallics 2012, 31, 3636–3646.
[
3
[16] a) Y. Vidavsky, A. Anaby, N. G. Lemcoff, Dalton Trans. 2012, 41, 32–43; b)
Y. Ginzburg, G. N. Lemcoff, Hoveyda-type olefin metathesis complexes,
in Olefin Metathesis: Theory and Practice (Ed.: K. Grela), John Wiley,
Hoboken, NJ, 2014; c) M. Barbasiewicz, Novel concepts in catalyst
design—a case study of development of Hoveyda-type complexes, in
Olefin Metathesis: Theory and Practice (Ed.: K. Grela), John Wiley,
Hoboken, NJ, 2014.
Experimental Section
Text and figures giving NMR spectra and experimental procedures
for the syntheses of 3–7, 9–11, 13–16 and 18–20 are available in
the supporting information. CCDC-1026979 (complex 20b) con-
tains the supplementary crystallographic data for this paper. These
[
17] The term ‘quinonylidene’ means the ‘methylenequinone’ structure of li-
gands. In the literature are two similar terms, ‘quinolinylidene’ and
‘quinolidene’, both referring rather to methylenequinoline and related
species. Interestingly, the latter also form ruthenium chelates, see:
M. Barbasiewicz, A. Szadkowska, R. Bujok, K. Grela, Organometallics
2
006, 25, 3599–3604.
[
18] J. Maignan, G. Malle, A. Deflandre, G. Lang (L’Oreal, France), New
derivatives of 5,6,7,8-tetrahydro-1-naphthalenol, a process for their
preparation and cosmetic and pharmaceutical compositions
containing them. US Patent 5043482, 1991.
19] The Wittig reactions of o-vanilin and 2,3-dihydroxybenzaldehyde were
performed with an excess of potassium t-amylate base to deprotonate
the phenolic OH groups. Despite deactivating effect of the anionic sub-
stituents, isolated yields of the products were good (94 and 81%, re-
spectively). Alkoxysubstituted ligands bearing propenyl substituents
Acknowledgements
This work was financed by the Iuventus Plus programme of the
Polish Ministry of Science and Higher Education (grant no. IP2012
[
001972, 2013-2015). NMR studies presented in the report were car-
ried out at the Biological and Chemical Research Centre, University
of Warsaw, established within the project co-financed by the Euro-
pean Union from the European Regional Development Fund under
the Operational Programme Innovative Economy, 2007–2013. The
authors thank: Mr Robert Pawłowski for preliminary syntheses of li-
gands 3–5 and 11, Umicore AG & Co. KG for donation of the M2 and
M23 complexes, and Prof. Karol Grela for support and the opportu-
nity to perform independent research programme in the field.
(3b, 5a–c, 6, 7, 10b, and 19a,b) were isolated as mixtures of E/Z iso-
mers, while sterically hindered tetraline derivative 4 was a Z isomer,
predominantly.
[
20] Simple unsubstituted vinyl- and propenylquinones remain virtually
unknown, and only a limited number of reports characterized
related structures as prone toward Diels–Alder reactions, and
electrocyclization processes: a) H. Irngartinger, B. Stadler, Eur. J. Org.
Chem. 1998, 605–626; b) K. A. Parker, T. L. Mindt, Org. Lett. 2001, 3,
3
9
875–3878; c) K. A. Parker, T. L. Mindt, Tetrahedron 2011, 67,
779–9786.
[
21] See the supporting information for details.
References
[22] T. N. Van, B. Kesteleyn, N. De Kimpe, Tetrahedron 2001, 57, 4213–4219.
[
23] In ligand exchange reactions derivatives of 2-hydroxystyrene may form
chelated ruthenium phenoxides. Thus we omitted ligands 5a and 5b
from the studies: a) P. Żak, S. Rogalski, M. Kubicki, P. Przybylski,
C. Pietraszuk, Eur. J. Inorg. Chem. 2014, 1131–1136; b) A. Kozłowska,
M. Dranka, J. Zachara, E. Pump, C. Slugovc, K. Skowerski, K. Grela,
Chem. Eur. J. 2014, 20, 14120–14125.
[1] For examples, see: a) H. J. Yoon, J. Kuwabara, J.-H. Kim, C. A. Mirkin,
Science 2010, 330, 66–69; b) U. Lüning, Angew. Chem. Int. Ed. 2012,
51, 8163–8165.
[
[
2] H.-J. Schanz, Curr. Org. Chem. 2013, 17, 2575–2591.
3] L. H. Peeck, S. Leuthäusser, H. Plenio, Organometallics 2010, 29,
4
339–4345.
4] Ł. Gułajski, A. Michrowska, R. Bujok, K. Grela, J. Mol. Catal. A 2006, 254,
18–123.
5] For recent examples of thermally activated metathesis catalysts, see: a)
K. Grudzień, K. Żukowska, M. Malińska, K. Woźniak, M. Barbasiewicz,
Chem. Eur. J. 2014, 20, 2819–2828; b) M. Barbasiewicz, M. Malińska,
K. Błocki, J. Organometal. Chem. 2013, 745–746, 8–11; c) A. Ben-Asuly,
E. Tzur, C. E. Diesendruck, M. Sigalov, I. Goldberg, N. G. Lemcoff,
Organometallics 2008, 27, 811–813.
[24] Indenylidene ruthenium complexes 12a and 12b are commercially
available from Umicore AG & Co. KG as catalysts ‘M2’ and ‘M23’, respec-
tively (trade names). For their preparation, see: a) S. Monsaert,
R. Drozdzak, V. Dragutan, I. Dragutan, F. Verpoort, Eur. J. Inorg. Chem.
2008, 2008, 432–440; b) H. Clavier, C. A. Urbina-Blanco, S. P. Nolan,
Organometallics 2009, 28, 2848–2854.
[25] D. J. Nelson, P. Queval, M. Rouen, M. Magrez, L. Toupet, F. Caijo, E. Borré,
I. Laurent, C. Crévisy, O. Baslé, M. Mauduit, J. M. Percy, ACS Catalysis
2013, 3, 259–264.
[
[
1
[
6] For examples of UV-activated metathesis catalysts, see: a)
C. E. Diesendruck, O. Iliashevsky, A. Ben-Asuly, I. Goldberg,
N. G. Lemcoff, Macromol. Symp. 2010, 293, 33–38; b) A. Ben-Asuly,
A. Aharoni, C. E. Diesendruck, Y. Vidavsky, I. Goldberg, B. F. Straub,
N. G. Lemcoff, Organometallics 2009, 28, 4652–4655.
[26] Properties of complex 16 contrast with the latent behaviour of related
naphthalene complex bearing iPrO coordinating group (SiMes):
M. Barbasiewicz, A. Szadkowska, A. Makal, K. Woźniak, K. Grela, Chem.
Eur. J. 2008, 14, 9330–9337.
[27] We were able to obtain a satisfactory elemental analysis only for com-
[
[
[
7] For other photoswitchable catalysts, see: B. M. Neilson, C. W. Bielawski,
plexes 15 and 20b.
ACS Catal. 2013, 3, 1874–1885.
8] K. Arumugam, C. D. Varnado Jr., S. Sproules, V. M. Lynch, C. W. Bielawski,
Chem. Eur. J. 2013, 19, 10866–10875.
[28] We wish to acknowledge the use of a free version of Ortep-3 for
Windows program: L. J. Farrugia, J. Appl. Crystallogr. 2012, 45,
849–854.
[29] A. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos,
K. Grela, J. Am. Chem. Soc. 2004, 126, 9318–9325.
9] R. Savka, S. Foro, M. Gallei, M. Rehahn, H. Plenio, Chem. Eur. J. 2013, 19,
10655–10662.
Appl. Organometal. Chem. (2015)
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc