Page 5 of 6
Journal of the American Chemical Society
SN2 Processes. ACS Cent. Sci., 2017, 3, 692. (b) Choi, J.; Fu, G. C.
Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes. J. Am.
Chem. Soc. 2017, 139, 7705. For the arylation of benzylic C-H bonds via
1,5-HAT, see (d) Li, Z.; Wang, Q.; Zhu, J.-P. Copper-Catalyzed Arylation
Transition Metal-Catalyzed Alkyl-Alkyl Bond Formation: Another
Dimension in Cross-Coupling Chemistry. Science, 2017, 356, 152. (c)
Manolikakes, G.; Knochel, P.; Molander, G. A. Coupling Reactions
1
2
3
4
5
6
7
8
9
3
of Remote C(sp )-H Bonds in Carboxamides and Sulfonamides.
3
2
between sp and sp carbon centers. In Comprehensive Organic Synthesis;
Eds.; Elsevier: Amsterdam, 2014; Vol. 3, pp 392. (d) Lu, Q.; Glorius, F.
Chem. Sci. 2019, DOI: 10.1039/C8SC04366C.
3
Radical Enantioselective C(sp )-H Functionalization. Angew. Chem., Int.
Ed. 2017, 56, 49. For some selected examples, see: (e) Mu, X.; Shibata, Y.;
Makida, Y.; Fu, G. C. Control of Vicinal Stereocenters through Nickel-
Catalyzed Alkyl-Alkyl Cross-Coupling. Angew. Chem. Int. Ed., 2017, 56,
9. For the mechanistic study of the aylation of benzylic radicals, see: (a)
Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. Copper-Catalyzed
Intermolecular Trifluoromethylarylation of Alkenes: Mutual Activation of
+
3
5
821. (f) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. A
Arylboronic Acid and CF
Reagent. J. Am. Chem. Soc. 2014, 136, 10202.
General, Modular Method for the Catalytic Asymmetric Synthesis of
Alkylboronate Esters. Science, 2016, 354, 1265. (g) Zuo, Z; Cong, H.; Li,
W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. Enantioselective
Decarboxylative Arylation of α-Amino Acids via the Merger of
Photoredox and Nickel Catalysis. J. Am. Chem. Soc. 2016, 138, 1832. (h)
Schley, N. D.; Fu, G. C. Nickel-Catalyzed Negishi Arylations of
Propargylic Bromides: A Mechanistic Investigation. J. Am. Chem. Soc.
For more example, see: (b) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; ;
Xiao, W.-J. Copper-Catalyzed Radical Cross-Coupling of Redox-Active
Oxime Esters, Styrenes, and Boronic Acids, Angew. Chem. Int. Ed. 2018,
57, 15505.
10. Under the reaction conditions in ref. 7d, the reaction of α-
methylstyrene provided a small amount of the self-coupling products of
benzylic radicals (12%), along with allylic trifluoromethylation products
(~5%). The formation of the latter product suggested that a tertiary
benzylic radical was oxidized by Cu(II) species to give tertiary benzylic
cations followed by a sequential deprotonation. For details, see SI, and
Ling, L.; Liu, K.; Li, X.; Li, Y.-X. General Reaction Mode of Hypervalent
Iodine Trifluoromethylation Reagent: A Density Functional Theory Study.
ACS Catal. 2015, 5, 2458..
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
014, 136, 16588. (i) Cherney, A. H.; Reisman, S. E. Nickel-Catalyzed
Asymmetric Reductive Cross-Coupling Between Vinyl and Benzyl
Electrophiles. J. Am. Chem. Soc. 2014, 136, 14365. (j) Jin, M.; Adak, L.;
Nakamura, M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions
of α-Chloroesters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015,
1
37, 7128.
4
. (a) Tsuji, T.; Yorimitsu, H.; Oshima, K. Cobalt-Catalyzed Coupling
11. The asymmetric Cu-catalyzed coupling of carbonyl-substituted tertiary
carbon-centered radicals with amines using chiral phosphine ligand has
been reported by Peters and Fu. For details, see ref. 5b
Reaction of Alkyl Halides with Allylic Grignard Reagents. Angew. Chem.,
Int. Ed. 2002, 41ꢀ ꢁꢂꢃꢄꢅ ꢆbꢇ ꢈoꢉreꢀ ꢊꢅꢋ Drꢌꢍe, T.; Wang, C.; Glorius, F.
Nickel-Catalyzed Cross-Coupling of Aryl Bromides with Tertiary
Grignard Reagents Utilizing Donor-Functionalized N-Heterocyclic
Carbenes (NHCs). Chem. Eur. J. 2011, 17, 6052. (c) Zultanski, S. L.; Fu,
G. C. Nickel-Catalyzed Carbon-Carbon Bond-Forming Reactions of
Unactivated Tertiary Alkyl Halides: Suzuki Arylations. J. Am. Chem. Soc.
12. For the side-arm effect, see: (a) Liao, S.; Sun, X.; Tang, Y. Side Arm
Strategy for Catalyst Design: Modifying Bisoxazolines for Remote
Control of Enantioselection and Related. Acc. Chem. Res. 2014, 47, 2260.
(b) Zhou, J.; Tang, Y. Side Arm Effect:ꢎ Improvement of tꢉe Enantiomeric
Excess in the Asymmetric Michael Addition of Indoles to Alkylidene
Malonates. J. Am. Chem. Soc. 2002, 124, 9030. (c) Bellemin-Laponnaz, S.;
Gade, L. H. A Modular Approach to C1 and C3 Chiral N-Tripodal
Ligands for Asymmetric Catalysis. Angew. Chem., Int. Ed. 2002, 41, 3473.
13 (a) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Regiospecific
Functionalization of Azacalixaromatics through Copper-Mediated Aryl C-
H Activation and C-O Bond Formation. Org. Lett. 2011, 13, 6560. (b)
Huffman, L. M.; Casitas, A.; Font, M.; Canta, M.; Costas, M.; Ribas, X.;
Stahl, S. S. Observation and Mechanistic Study of Facile C-O Bond
Formation between a Well-Defined Aryl copper (III) Complex and
Oxygen Nucleophiles. Chem. Eur. J. 2011, 17, 10643. (c) Zhang, Q.; Liu,
Y.; Wang, T.; Zhang, X.; Long, C.; Wu, Y.-D.; Wang, M.-X. Mechanistic
Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between
Arenes and Boronic Acids under Aerobic Conditions. J. Am. Chem. Soc.
2018, 140, 5579. (d) Liu, Y.; Long, C.; Zhao, L.; Wang, M.-X.
Functionalization of Azacalixaromatics by Cu(II)-Catalyzed Oxidative
Cross-Coupling Reaction between the Arene C-H Bond and Boronic
Acids. Org. Lett. 2016, 18, 5078.
14. Tertiary amides bearing a phenyl group and an unhindered alkyl group
on the amidyl nitrogen atom exist predominately in a cis-form, while
secondary amides are in a trans-form. In addition, the activation energies
for the cis/trans isomerization of amides are usually high. For details, see:
(a) Itai, A.; Toriumi, Y.; Saito, S.; Kagechika, H.; Shudo, K. Preference
for cis-Amide Structure in N-Acyl-N-Methylanilines. J. Am. Chem. Soc.
1992, 114, 10649. (b) Saito, S.; Toriumi, Y.; Tomioka, N.; Itai, A.
Theoretical Studies on cis-Amide Preference in N-Methylanilides. J. Org.
Chem. 1995, 60, 4715. (c) Dugave, C.; Demange, L. Cis-Trans
Isomerization of Orꢍanic Molecules and Biomolecules:ꢎ Implications and
Applications. Chem. Rev. 2003, 103, 2475. (d) Hou, Z.; Mao, Z.; Song, J.;
Xu. H.-C. Electrochemical Synthesis of Polycyclic N-Heteroaromatics
through Cascade Radical Cyclization of Diynes. ACS Catal. 2017, 7, 5810.
(e) Wu, Z.; Xu. H.-C. Synthesis of C3-Fluorinated Oxindoles through
Reagent-Free Cross-Dehydrogenative Coupling. Angew. Chem. Int. Ed.
2017, 56, 4734.
2
013, 135, 624. (d) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-
Catalyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl
Halides. J. Am. Chem. Soc. 2015, 137, 11562. (e) Primer, D. N.; Molander,
G. A. Enabling the Cross-Coupling of Tertiary Organoboron Nucleophiles
through Radical-Mediated Alkyl Transfer. J. Am. Chem. Soc. 2017, 139,
9
5
847.
. (a) Wang, Z.; Yin, H.; Fu, G. C. Catalytic Enantioconvergent Coupling
of Secondary and Tertiary Electrophiles with Olefins. Nature 2018, 563,
79. A similar coupling of tertiary carbon radical with L*Cu(II) amine
3
species to generate quaternary C-N bond, see: (b) Kainz, Q. M.; Matier, C.
D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric
Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light.
Science 2016, 351, 681.
6
. Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed Radical Relay for
Asymmetric Radical Transformations. Acc. Chem. Res. 2018, 51, 2036.
7. For the asymmetric cyanantion, see: (a) Wang, F.; Wang, D.; Wan, X.;
Wu, L.; Chen, P.; Liu, G. Enantioselective Copper-Catalyzed
Intermolecular Cyanotrifluoromethylation of Alkenes via Radical Process.
J. Am. Chem. Soc. 2016, 138, 15547. (b) Wang, D.; Wang, F.; Chen, P.;
Lin, Z.; Liu, G. Enantioselective Copper-Catalyzed Intermolecular
Amino- and Azidocyanation of Alkenes in a Radical Process. Angew.
Chem., Int. Ed. 2017, 56, 2054. (c) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.;
Liu, G. Enantioselective Decarboxylative Cyanation Employing
Cooperative Photoredox Catalysis and Copper Catalysis. J. Am. Chem.
Soc. 2017, 139, 15632. For the asymmetric arylation, see: (d) Wu, L.;
Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. Asymmetric Cu-
Catalyzed Intermolecular Trifluoromethylarylation of Styrenes:
Enantioselective Arylation of Benzylic Radicals. J. Am. Chem. Soc. 2017,
139, 2904. (e) Wang, D.; Wu, L.; Wang, F.; Wan, X.; Chen, P.; Lin, Z.;
Liu, G. Asymmetric Copper-Catalyzed Intermolecular Aminoarylation of
Styrenes: Efficient Access to Optical 2,2-Diarylethylamines. J. Am. Chem.
Soc. 2017, 139, 6811. For the asymmetric alkynylation, see: (f) Fu, L.;
Zhou, S.; Wan, X.; Chen, P.; Liu, G. Enantioselective
Trifluoromethylalkynylation of Alkenes via Copper-Catalyzed Radical
Relay. J. Am. Chem. Soc. 2018, 140, 10965.
3 4 6
15. When Cu(CH CN) PF was used as catalyst, the reaction of 1c
provided the arylation product 3c in 13% yield (49% ee) and the radical
cyclization product 3c' in 28% yield. For details, see the SI.
8
. For the asymmetric benzylic C-H cyanation, see: (a) Zhang, W.; Wang,
F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G.
Enantioselective Cyanation of Benzylic C-H Bonds via Copper-Catalyzed
Radical Relay. Science 2016, 353, 1014. For the benzylic C-H arylation,
see: (b) Zhang, W.; Chen, P.; Liu, G. Copper-Catalyzed Arylation of
S. S. Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of
16. We assumed that the CONH moiety in acrylamides would facilitate
II
the interaction of the tertiary carbon-centered radicals with (L4)Cu Ar
and enhance the enantioselectivity, which might involve the bonding of an
oxygen of carbonyl or a nitrogen atom of amides to copper, but the
detailed mechanism is unknown.
5
ACS Paragon Plus Environment