2304
C. G. C. M. Netto et al. / Tetrahedron: Asymmetry 20 (2009) 2299–2304
(RS)-1-(4-Chlorophenyl)ethyl acetate 2e: Isotherm at 130 °C,
(R)-enantiomer 5.31 min, and (S)-enantiomer 6.00 min.
(RS)-1-(4-Methylphenyl)ethyl acetate 2f: 93 °C up to 113 °C,
1 °C/min, (R)-enantiomer 10.43 min, and (S)-enantiomer 11.75 min.
4.8. Absolute configuration
The absolute configurations of all compounds were determined
by comparison of the sign of the measured specific rotation with
those in the literature.1
4.9. Enzymatic activity assay using the hydrolysis of para-
nitrophenyl palmitate (pNPP)
The activity assay was done by monitoring at 410 nm the
appearance of para-nitrophenol during the hydrolysis of pNPP as
substrate, in accordance with the procedure reported by Teng
et al.23 One unit of lipase activity is defined as the amount of lipase
which catalyzed the production of 1 lmol of the para-nitrophenol
per minute under the experimental conditions.
Figure 6. Recycling behavior of CAL-B immobilized on magnetite nanoparticles for
kinetic resolution of the (RS)-1-phenylethanol rac-1a: 30 mg of CAL-B/APTS-
MagNP; 1 mmol of rac-1a; 5 mmol of vinyl acetate; 6 h at 32 °C; aconversion
expressed as c = ees/ees + eep.
was obtained with Fourier transform infrared spectroscopy (FTIR-
8300, SHIMADZU) using KBr pellets. Each spectrum was collected
Acknowledgments
after accumulating 50 scans at a resolution of 2 cmꢀ1
.
The authors acknowledge the support from FAPESP, CNPq, and
PETROBRAS, and Professor Pedro K. Kyohara (Institute of Physics,
Univ. S. Paulo) for obtaining TEM images of APTS-MagNP.
4.6. General procedure for the kinetic resolution of the alcohols
(RS)-1a–f
References
To a 10 mL glass flask containing 1 mL of MTBE (methyl-tert-bu-
tyl ether), 50 lL of vinyl acetate (5 mmol), and 30 mg immobilized
1. (a) Chakraborty, S.; Sahoo, B.; Teraoka, I.; Miller, L. M.; Gross, R. A. Macromolecules
2005, 38, 61; (b) Huang, S.-H.; Liao, M.-H.; Chen, D.-H. Biotechnol. Prog. 2003, 19,
1095; (c) Torres, R.; Ortiz, C.; Pessela, B. C. C.; Palomo, J. M.; Mateo, C.; Guisan, J.
M.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2006, 39, 167; (d) Reetz, M.
T.; Zonta, A.; Vijayakrishnan, V.; Schimossek, K. J. Mol. Catal. A: Chem. 1998, 134,
251; (e) Hung, T.-C.; Giridhar, R.; Chiou, S.-H.; Wu, W.-T. J. Mol. Catal. B: Enzym.
2003, 26, 69; (f) Guo, Z.; Sun, Y. Biotechnol. Prog. 2004, 20, 500; (g) Fernandez-
Lorente, G.; Palomo, J. M.; Mateo, C.; Munilla, R.; Ortiz, C.; Cabrera, Z.; Guisan, J.
M.; Fernandez-Lafuente, R. Biomacromolecules 2006, 7, 2610; (h) Mateo, C.;
Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R.
Enzyme Microb. Technol. 2007, 40, 1451; (i) Dallavecchia, R.; Sebrão, D.;
Nascimento, M. G.; Soldi, V. Process Biochem. 2005, 40, 2677–2682; (j)
Nascimento, M. G.; Queiroz, N. Tetrahedron Lett. 2002, 43, 5225–5227.
2. (a) Fujii, R.; Nakagawa, Y.; Hiratake, J.; Sogabe, A.; Sakata, K. Protein Eng. Des.
Sel. 2005, 18, 93; (b) Torres-Gavilan, A.; Castillo, E.; Lopez-Munguıa, A. J. Mol.
Catal. B: Enzym. 2006, 41, 136; (c) Branneby, C.; Carlqvist, P.; Hult, K.; Brinck, T.;
Berglund, P. J. Mol. Catal. B: Enzym. 2004, 31, 123; (d) Carlqvist, P.; Magnusson,
A.; Hult, K.; Brinck, T.; Berglund, P. J. Am. Chem. Soc. 2003, 125, 874; (e)
Svedendahl, M.; Hult, K.; Berglund, P. J. Am. Chem. Soc. 2005, 127, 17988; (f)
Hong-Xia, D.; Shi-Ping, Y.; Jian, W. Biotechnol. Lett. 2006, 28, 1503; (g) Torre, O.;
Alfonso, I.; Gotor, V. Chem. Commun. 2004, 1724.
3. Herdt, A. R.; Kim, B.-S.; Taton, T. A. Bioconjugate Chem. 2007, 18, 183.
4. Sabbani, S.; Hendentröm, E.; Nordin, O. J. Mol. Catal. B: Enzym. 2006, 42, 1–9.
5. Willner, I.; Katz, E. Langmuir 2006, 22, 1409–1419.
6. Kim, D. K.; Mikhaylova, M.; Zhang, Y.; Muhammed, M. Chem. Mater. 2003, 15,
1617–1627.
7. Kirk, O.; Christensen, W. Org. Process Res. 2002, 6, 446.
8. Yamaura, M.; Camilo, R. L.; Sampaio, L. C.; Macedo, M. A.; Nakamura, M.; Toma,
H. E. J. Magn. Magn. Mater. 2004, 279, 210–217.
9. Cornell, R. M.; Schwertmann, U. The Iron Oxides; Wiley: Weinheim, 2003.
10. Waldron, R. D. Phys. Rev. 1955, 99, 1727.
11. Ma, M.; Zhang, Y.; Yu, W.; Shen, H.-Y.; Zhang, H.-Q.; Gu, N. Colloids Surf., A 2003,
212, 219.
12. Guang-She, L.; Li-Ping, L.; Smith, R. L., Jr.; Inomata, H. J. Mol. Struct. 2001, 560, 87.
13. Bruni, S.; Cariati, F.; Casu, M.; Lai, A.; Misunu, A.; Piccaluga, G.; Solinas, S.
Nanostruct. Mater. 1999, 11, 573.
14. White, L. D.; Tripp, C. P. J. Colloid Interface Sci. 2000, 232, 400.
15. Xu, Z.; Liu, Q.; Finch, J. A. Appl. Surf. Sci. 1997, 120, 269.
enzyme on magnetic nanoparticles (0.4 mg protein/30 mg mag-
netic nanoparticle) was added the appropriate alcohol 1a–f
(1 mmol). The reaction mixture was stirred on a rotary shaker
(32 °C, 160 rpm) for the appropriate time (Table 1). After this, the
mixture was filtered and the solvent was evaporated.
4.7. Evaluation of the enzymatic kinetic resolutions
After the reaction time given in Table 1, the samples were
analyzed by GC analysis using a chiral capillary column. The enan-
tiomeric excess of the compounds were determined by chromato-
graphic comparison with authentic samples of (RS)-alcohols 1a-e
and (RS)-acetates 2a–e synthesized chemically (see Section 4.1).
GC conditions (carrier gas-H2, 100 kPa): injector 220 °C, detec-
tor 220 °C, column temperature, and retention time, tR (min), for
each compound are indicated below.
(RS)-phenylethanol 1a: Isotherm at 107 °C, (R)-enantiomer
6.22 min, and (S)-enantiomer 6.87 min.
(RS)-1-(4-Nitrophenyl)ethanol 1b: Isotherm at 150 °C, (R)-
enantiomer 19.92 min, and (S)-enantiomer 20.30 min.
(RS)-1-(4-Methoxyphenyl)ethanol 1c: Isotherm at 119 °C, (R)-
enantiomer 6.22 min, and (S)-enantiomer 6.87 min.
(RS)-1-(4-Bromophenyl)ethanol 1d: Isotherm at 135 °C, (R)-
enantiomer 9.54 min, and (S)-enantiomer 10.52 min.
(RS)-1-(4-Chlorophenyl)ethanol 1e Isotherm at 130 °C, (R)-
enantiomer 7.33 min, and (S)-enantiomer 8.19 min.
(RS)-1-(4-Methylphenyl)ethanol 1f: Isotherm at 113 °C, (R)-
enantiomer 6.79 min, and (S)-enantiomer 7.71 min.
(RS)-1-Phenylethyl acetate 2a: 110 °C up to 103 °C, 1 °C/min,
(R)-enantiomer 4.35 min, and (S)-enantiomer 5.05 min.
(RS)-1-(4-Nitrophenyl)ethyl acetate 2b: Isotherm at 150 °C, (R)-
enantiomer 9.44 min, and (S)-enantiomer 10.23 min.
(RS)-1-(4-Methoxyphenyl)ethyl acetate 2c: Isotherm at 110 °C,
(R)-enantiomer 11.79 min, and (S)-enantiomer 13.47 min.
(RS)-1-(4-Bromophenyl)ethyl acetate 2d: Isotherm at 135 °C,
(R)-enantiomer 6.93 min, and (S)-enantiomer 7.75 min.
16. Ramesh, S.; Felner, I.; Koltypin, Y.; Gedanken, A. J. Mater. Res. 2000, 15, 944.
17. Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; Oxford, 2004.
18. Christensen, M. W.; Kirk, O. Org. Process Res. Dev. 2002, 6, 446.
19. Handbook of Chemistry and Physics, 67ª ed.; CRC Press: Florida, USA.
20. Bradford, M. M. Anal. Biochem. 1976, 72, 248.
21. Bovet, C.; Zenobi, R. Anal. Biochem. 2008, 373, 380.
22. Uppenberg, J.; Öhmer, N.; Norin, M.; Hult, K.; Kleywegt, G. J.; Patkar, S.;
Waagen, V.; Anthonsen, T.; Jones, T. A. Biochemistry 1995, 34, 16838–16851.
23. Teng, Y.; Xu, Y. Anal. Biochem. 2007, 363, 297.