Communications
currently being addressed in our laboratory—seem necessary
for the development of a comprehensive and predictive
model for this enzyme family to successfully expand the
biocatalytic armament in the field of Baeyer–Villiger oxida-
tions.
Received: December 16, 2004
Revised: March 1, 2005
Published online: April 29, 2005
Keywords: biocatalysis · bioorganic chemistry ·
.
monooxygenases · oxidation · phylogenetic analysis
Figure 1. Phylogenetic tree of BVMOs originating from Acinetobacter,
Arthrobacter, Brachymonas, Brevibacterium, Comamonas, and Rhodococ-
4
cus species with the N -diaminopropane monooxygenase from Sinorhi-
[
[
1] A. Baeyer, V. Villiger, Chem. Ber. 1899, 32, 3625 – 3633.
2] G. R. Krow, Org. React. 1993, 43, 251 – 798; M. Renz, B.
Meunier, Eur. J. Org. Chem. 1999, 737 – 750.
zobium meliloti (DNMOSino) as the outgroup (1000 bootstraps).
[
3] R. Noyori, T. Sato, H. Kobayashi, Bull. Chem. Soc. Jpn. 1983, 56,
2661 – 2679.
“
CHMO-type” group. CHMOBrevi1 is located at the borderline
[4] K. Mislow, J. Brenner, J. Am. Chem. Soc. 1953, 75, 2318 – 2322.
[5] M. D. Mihovilovic, F. Rudroff, B. Grꢂtzl, Curr. Org. Chem. 2004,
of the two clusters closer to the CHMO group, a fact which
again agrees with its stereopreference and slightly modified
substrate-acceptance profile.
A related phylogenetic tree analysis with biomolecular
interpretation has been reported previously for a large
general set of monooxygenases.
our results to be the first connection of primary protein
sequence with biocatalyst performance for BVMOs.
8, 1057 – 1069.
[
[
[
6] C. Bolm in Peroxide Chemistry (Ed.: W. Adam), Wiley-VCH,
Weinheim, 2000, pp. 494 – 510; G. Strukul, Angew. Chem. 1998,
110, 1256 – 1267; Angew. Chem. Int. Ed. 1998, 37, 1198 – 1209.
7] Z. Li, J. B. van Beilen, W. A. Duetz, A. Schmid, A. de Raadt, H.
Griengl, B. Witholt, Curr. Opin. Chem. Biol. 2002, 6, 136 – 144;
S. G. Burton, Trends Biotechnol. 2003, 21, 543 – 549.
[
26]
However, we consider
8] N. M. Kamerbeek, D. B. Janssen, W. J. H. van Berkel, M. W.
Fraaije, Adv. Synth. Catal. 2003, 345, 667 – 678; M. D. Mihovi-
lovic, B. Mꢃller, P. Stanetty, Eur. J. Org. Chem. 2002, 3711 – 3730;
S. M. Roberts, P. W. H. Wan, J. Mol. Catal. B 1998, 4, 111 – 136.
9] Expression systems for cyclohexanone monooxygenase from
Acinetobacter (CHMOAcineto): a) G. Chen, M. M. Kayser, M. D.
Mihovilovic, M. E. Mrstik, C. A. Martinez, J. D. Stewart, New J.
Chem. 1999, 23, 827 – 832; b) M. D. Mihovilovic, G. Chen, S.
Wang, B. Kyte, R. Rochon, M. M. Kayser, J. D. Stewart, J. Org.
Chem. 2001, 66, 733 – 738; c) for an alternative Escherichia coli
based whole-cell biocatalyst, see: S. D. Doig, L. M. OꢀSullivan, S.
Patel, J. M. Ward, J. M. Woodley, Enzyme Microb. Technol. 2001,
When the alignment of protein sequences of BVMOs
included in this study is compared with the recently described
point mutations in CHMOAcineto
[
27]
,
two striking similarities
[
can be identified. The Leu143Phe mutation exactly follows
the separation in the two main enzyme groups. The CPMO
type in both cases has a phenylalanine, whereas the CHMO
type, with the exception of CHMOBrevi1, has a leucine residue
in this position, a fact again that reflects the borderline
position of the latter enzyme. Phenylalanine is conserved in
position 432 throughout the studied sequences with two
exceptions: CHMOBrevi1 and CHMOArthro. The Phe432Tyr
mutation exactly mimics the amino acid composition of
CHMOBrevi1 at this position. This mutation has been indicated
to significantly increase stereoselectivity and, interestingly, a
similar trend was observed in this study.
28, 265 – 274; d) for a preceeding Saccharomyces cerevisiae
expression system, see: J. D. Stewart, K. W. Reed, M. M.
Kayser, J. Chem. Soc. Perkin Trans. 1 1996, 755 – 757.
[10] For an isolated two-enzyme system, see: S. Rissom, U. Schwarz-
Linek, M. Vogel, V. I. Tishkov, U. Kragl, Tetrahedron: Asym-
metry 1997, 8, 2523 – 2526.
[
11] H. D. Simpson, V. Alphand, R. Furstoss, J. Mol. Catal. B 2001,
Recently, the first X-ray structure for a moderately related
1
1
6, 101 – 109; A. Z. Walton, J. D. Stewart, Biotechnol. Prog. 2002,
8, 262 – 268; S. D. Doig, P. J. Avenell, P. A. Bird, P. Gallati, K. S.
[
28]
BVMO from an extremophilic microorganism was solved.
This work gave valuable suggestions for the molecular
mechanism of the enzymatic oxidation. However, the
enzyme structure was determined in the absence of
NADPH and no cocrystallization with a substrate is available,
so far. As the authors suggest that the protein undergoes
extensive conformational changes in the biocatalytic cycle,
further conclusions for distant members of the BVMO family,
such as those included in this study, seem rather speculative.
However, when we consider the information together with
recent results in modifying the enantioselectivity of CH-
MOAcineto by random mutagenesis, we can begin to identify
BVMO regions with major impact on biocatalytic behavior
and stereopreference. Further structural and biotransforma-
tion studies on BVMOs more closely related to the two
clusters outlined herein and on a larger set of ketones—
Lander, G. J. Lye, T. Wohlgemuth, J. M. Woodley, Biotechnol.
Prog. 2002, 18, 1039 – 1046.
12] I. Hilker, V. Alphand, R. Wohlgemuth, R. Furstoss, Adv. Synth.
Catal. 2004, 346, 203 – 214.
13] a) H. Iwaki, Y. Hasegawa, P. C. K. Lau, S. Wang, M. M. Kayser,
Appl. Environ. Microbiol. 2002, 68, 5681 – 5684; b) M. D.
Mihovilovic, B. Mꢃller, A. Schulze, P. Stanetty, M. M. Kayser,
Eur. J. Org. Chem. 2003, 2243 – 2249; c) M. D. Mihovilovic, F.
Rudroff, B. Mꢃller, P. Stanetty, Bioorg. Med. Chem. Lett. 2003,
13, 1479 – 1482; d) M. D. Mihovilovic, F. Rudroff, B. Grꢂtzl, P.
Stanetty, Eur. J. Org. Chem. 2005, 809 – 816.
[
[
[
27]
[14] N. A. Donoghue, D. B. Norris, P. W. Trudgill, Eur. J. Biochem.
976, 63, 175 – 192.
1
[
15] P. Brzostowicz, D. M. Walters, S. M. Thomas, V. Nagarajan, P. E.
Rouviere, Appl. Environ. Microbiol. 2003, 69, 334 – 342.
16] M. G. Bramucci, P. C. Brzostowicz, K. N. Kostichka, V. Nagar-
ajan, P. E. Rouviere, S. M. Thomas (E. I. DuPont de Nemours &
[
3
612
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3609 –3613