Page 19 of 23
1
ACS Catalysis
1
2
3
4
5
6
7
8
(5)
Seminal reports (a) Uraguchi, D.; Terada, M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via
Electrophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356–5357. (b) Akiyama, T.; Itoh, J.; Yokota, K.;
Fuchibe, K. Enantioselective Mannich‐Type Reaction Catalyzed by a Chiral Brønsted Acid. Angew. Chem.
Int. Ed. 2004, 43,1566–1568.
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(6)
Selected reviews: (a) Akiyama, T. Stronger Brønsted Acids. Chem. Rev. 2007, 107, 5744–5758. (b)
Terada, M. Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations. Synthesis
2010, 1929–1982. (c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, B. S. Chiral BINOL-Derived
Phosphoric Acids: Privileged Brønsted Acid Organocatalysts for C–C Bond Formation Reactions. Org.
Biomol. Chem. 2010, 8, 5262–5276. (d) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chiral Brønsted Acids in
Enantioselective Carbonylactivations – Activation Modes and Applications. Chem. Soc. Rev. 2011, 40,
4539–4549. (e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to Asymmetric
BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of
Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem. Rev. 2014,
114, 9047–9153. (f) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Addition and Correction to Complete
Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and
Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal
Phosphates. Chem. Rev. 2017, 117, 10608–10620.
0
1 9
2
3
4
5
6
7
1
1
1
1
1
0
1
2
3
4
8 15
9 16
0
1
2
3
4
5
1
1
1
2
2
7
8
9
0
1
(7)
(8)
Yoon, T. P.; Jacobsen, E. N. Privileged Chiral Catalysts. Science 2003, 299, 1691–1693.
Select Examples: (a) Li, G.; Liang, Y.; Antilla, J. C. A Vaulted Biaryl Phosphoric Acid-Catalyzed Reduction
of α-Imino Esters:ꢀ The Highly Enantioselective Preparation of α-Amino Esters. J. Am. Chem. Soc. 2007,
129, 5830–5831. (b) Milo, A., Neel, A. J.; Toste, F. D.; Sigman, M. S. A Data-Intensive Approach to
Mechanistic Elucidation Applied to Chiral Anion Catalysis. Science, 2015, 347, 737–743. (c) Momiyama,
N.; Tabuse, H.; Noda, H.; Yamanaka, M.; Fujinami, T.; Yamanishi, K.; Izumiseki, A.; Funayama, K.;
Egawa, F.; Okada, S.; Adachi, H.; Terada, M. Molecular Design of a Chiral Brønsted Acid with Two
Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels–Alder Reaction of
Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid–Monophosphoric Acid. J.
Am. Chem. Soc. 2016, 138, 11353–11359. (d) Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.;
Sigman, M. S. Parametrization of Non-covalent Interactions for Transition State Interrogation Applied to
Asymmetric Catalysis. J. Am. Chem. Soc. 2017, 139, 6803–6806. (e) Kaib, P. S. J.; Schreyer, L.; Lee, S.;
Properzi, R.; List, B. Extremely Active Organocatalysts Enable a Highly Enantioselective Addition of
Allyltrimethylsilane to Aldehydes. Angew. Chem. Int. Ed. 2016, 55, 13200–13203.
6 22
7 23
8
9
0
1
2
3
2
2
2
2
2
4
5
6
7
8
4 29
5
6
7
8
9
0
3
3
3
3
3
0
1
2
3
4
(9)
(a) Clardy, J.; Walsh, C. Lessons from Natural Molecules. Nature 2004, 432, 829–837. (b) Han, S.; Miller,
S. J. Asymmetric Catalysis at a Distance: Catalytic, Site-Selective Phosphorylation of Teicoplanin. J. Am.
Chem. Soc. 2013, 135, 12414–12421. (c) Giuliano, M. W.; Miller, S. J. Site-Selective Reactions with
Peptide-Based Catalysts. Top. Curr. Chem. 2016, 372, 157–201.
1 35
2 36
(10) (a) Newman, M.; Strzelecka, T.; Dorner, L. F.; Schildkraut, I.; Aggarwal, A. K. Structure of Bam HI
Endonuclease Bound to DNA: Partial Folding and Unfolding on DNA Binding. Science, 1995, 269, 656–
663. (b) Miller, S. J. In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. Acc. Chem.
Res. 2004, 37, 601−610. (c) Wennemers, H. Asymmetric Catalysis with Peptides. Chem. Commun. 2011,
47, 12036–12041. (c) Lewandowski, B.; Wennemers, H. Asymmetric Catalysis with Short-Chain Peptides.
Curr. Opin. Chem. Biol. 2014, 22, 40–46. (d) Davis, J. J.; Phipps, R. J. Harnessing Non-Covalent
Interactions to Exert Control Over Regioselectivity and Site-Selectivity in Catalytic Reactions. Chem. Sci.
2017, 8, 864–877. (e) Toste, F. D.; Sigman, M. S.; Miller, S. J. Pursuit of Noncovalent Interactions for
Strategic Site-Selective Catalysis. Acc. Chem. Res. 2017, 50, 609–615.
3
4
5
6
7
8
3
3
3
4
4
7
8
9
0
1
9 42
0 43
1
4
4
4
4
4
4
5
6
7
8
2
3
4
5
6
7
8
9
0
(11) Kutchukian, P. S.; Dropinski, J. F.; Dykstra, K. D.; Li, B.; DiRocco, D. A.; Streckfuss, E. C.; Campeau, L.-
C.; Cernak, T.; Vachal, P.; Davies, I. W.; Krska, S. W.; Dreher, S. D. Chemistry Informer Libraries: A
Chemoinformatics Enabled Approach to Evaluate and Advance Synthetic Methods. Chem. Sci. 2016, 7,
2604–2613.
1
9
ACS Paragon Plus Environment