A tetraphosphine used in palladium-catalyzed Suzuki–Miyaura coupling
Table 3. Suzuki coupling of sterically hindered aryl bromides with 2,6-dimethylphenylboronic acida
Entry
Aryl bromide
Bromobenzene
Pd loading (mol%)
Yield (%)
1
2
3
4
5
6
7
0.01
0.1
1
trace b,c
32b
97
2-Bromotulene
0.1
1
8b
74
2,6-Dimethylbromobenzene
1
6d
2
9d
aReaction conditions: aryl bromide 1 mmol, 2,6-dimethylphenylboronic acid 1.5 mmol, KOH 2 mmol, 1/PdCl2 = 1/1, dioxane 3 ml, temperature 100 ꢀC,
20 h, isolated yield.
bGas chromatographic yield.
cTemperature 90 ꢀC.
dGas chromatographic–mass spectrometric yield.
with an isolated yield. See supporting information for general
experimental details, synthetic procedure of the ligand and
Conclusion
In summary, PdCl2 associated with an easily synthesized
tetraphosphine N,N,N′,N′-tetra(diphenylphosphinomethyl)-1,2-
ethylenediamine 1 affords an efficient catalytic system for
Suzuki cross coupling reaction. With the catalyst loading of
0.0001 mol%, the electron-rich substrate 4-bromoanisole couples
with phenylboronic acid in a high TON of 750,000. A broad scope
of aryl and heteroaryl bromides can generate the desired products
in good yields, and the coupling of 2,6-dimethylphenylboronic
acid with sterically hindered aryl bromides leads to lower
reaction rates. The advantages of this catalyst system may be
attributed to the strong coordination ability of ligand 1 with
palladium. However, this system is not active for aryl chlorides.
Further work to improve the structure of the ligand is planned.
characterization data for the catalytic products.
References
[1] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
[2] R. Capdeville, E. Buchdunger, J. Zimmermann, A. Matter, Nat. Rev.
Drug Discov. 2002, 1, 493.
[3] M. Vilaró, G. Arsequell, G. Valencia, A. Ballesteros, J. Barluenga, Org.
Lett. 2008, 10, 3243.
[4] J. P. Heiskanen, O. E. O. Hormi, Tetrahedron 2009, 65, 518.
[5] K. Pomeisl, A. Holý, R. Pohl, K. Horská, Tetrahedron 2009, 65, 8486.
[6] M. B. Andrus, C. Song, Org. Lett. 2001, 3, 3761.
[7] R. C. Smith, R. A. Woloszynek, W. Z. Chen, T. Ren, J. D. Protasiewicz,
Tetrahedron Lett. 2004, 45, 8327.
[8] T. Itoh, T. Mase, Tetrahedron Lett. 2005, 46, 3573.
[9] C. Wolf, K. Ekoue-Kovi, Eur. J. Org. Chem. 2006, 1917.
[10] E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem. Int. Ed.
2007, 46, 2768.
[11] F. W. Li, S. Q. Bai, T. S. A. Hor, Organometallics 2008, 27, 672.
[12] D. H. Lee, Y. H. Lee, D. I. Kim, Y. Kim, W. T. Lim, J. M. Harrowfield, P.
Thuéry, M. J. Jin, Y. C. Park, I. M. Lee, Tetrahedron 2008, 64, 7178.
[13] V. Polshettiwar, A. Decottignies, C. Len, A. Fihri, ChemSusChem 2010,
3, 502.
[14] H. Bonin, E. Fouquet, F. X. Felpin, Adv. Synth. Catal. 2011, 353, 3063.
[15] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J. M. Basset, V. Polshettiwar,
Chem. Soc. Rev. 2011, 40, 5181.
[16] V. Farina, Adv. Synth. Catal. 2004, 346, 1553.
[17] J. P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651.
[18] D. A. Albisson, R. B. Bedford, S. E. Lawrence, P. N. Scully, Chem.
Commun. 1998, 2095.
[19] A. Zapf, A. Ehrentraut, M. Beller, Angew. Chem. Int. Ed. 2000, 39, 4153.
[20] J. C. Hierso, A. Fihri, R. Amardeil, P. Meunier, H. Doucet, M. Santelli,
Tetrahedron 2005, 61, 9759.
[21] A. Scrivanti, M. Bertoldini, U. Matteoli, S. Antonaroli, B. Crociani,
Tetrahedron 2009, 65, 7611.
[22] D. Yuan, H. V. Huynh, Organometallics 2010, 29, 6020.
[23] D. Schaarschmidt, H. Lang, ACS Catal. 2011, 1, 411.
[24] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc.
1999, 121, 9550.
[25] T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem.
Soc. 2005, 127, 4685.
[26] K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358.
[27] R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.
Experimental
General Procedure of Suzuki Coupling Reactions
All reactions were carried out under argon atmosphere with the
standard Schlenk techniques. Tetraphosphine
1
(8.5 mg,
0.01 mmol) and PdCl2 (1.8 mg, 0.01 mmol) were added to a
Schlenk tube equipped with a magnetic bar, and then degassed
DMF (1 ml) was added. The mixture was stirred overnight at room
temperature. 4-Bromoanisole (125 ml, 1 mmol), phenylboronic
acid (183 mg, 1.5 mmol) and KOH (112 mg, 2 mmol) were added
to another Schlenk tube with a magnetic bar. The dissolved mix-
ture of tetraphosphine 1/PdCl2 (10 ml, 0.0001 mmol) was trans-
ferred to the Schlenk tube of reactants by syringe. Then, dioxane
(3 ml) was added. The reaction mixture was heated at 90 ꢀC for
2 h. At the end of the reaction, the solution was cooled to room
temperature and water (5 ml) was added. The mixture solution
was extracted with ethyl acetate (3 Â 5 ml) and the organic layer
was dried over magnesium sulfate. The dried solution was filtered
and reduced to approx. 1–2 ml under vacuum, then purified with
silica gel chromatography to give the corresponding product
Appl. Organometal. Chem. 2012, 26, 342–346
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc